This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Cost-Efficient Cathode Air Path for PEM Fuel Cell Systems
Technical Paper
2020-01-1176
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Fuel cell technology can play a major role in reducing transportation-related emissions, especially in heavy-duty, long-haul applications. Consequent transfer of technology from air supply systems for combustion engines to cathode air paths serves as an enabler for necessary system cost reduction. To achieve the required system lifetime, the supply of clean air is essential. Gases like NOx, SO2 and NH3 poison the catalyst, leading to increased stack degradation rates. Effective removal with functionalized activated carbons enhances the catalyst´s lifetime. Research on real-life concentrations of these contaminants under different driving patterns and road profiles enables knowledge-based design of cathode air filter elements. To prevent flooding of components like air filter, humidifier, or stack, water separators are integrated at different position inside the system. Plastic air ducts with integrated sensors and flaps required to manage the air flow connect the different functional components. Broadband silencers are applied to reduce noises inside the system, e.g. generated by the compressor. Essential components like humidifier and air-cooler can easily be incorporated into the system. In the cathode air exhaust path, an additional water separator is applied to protect turbine blades and to prevent emission of splash water from the tailpipe. The consistent transfer of technology from air supply systems for combustion engines to cathode air paths enables cost-, noise and packaging-optimized, plausible system concepts with enhanced energy efficiency.
Authors
Citation
Harenbrock, M., Korn, A., Weber, A., and Hallbauer, E., "Cost-Efficient Cathode Air Path for PEM Fuel Cell Systems," SAE Technical Paper 2020-01-1176, 2020, https://doi.org/10.4271/2020-01-1176.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
[Unnamed Dataset 1] | ||
[Unnamed Dataset 2] | ||
[Unnamed Dataset 3] | ||
[Unnamed Dataset 4] | ||
[Unnamed Dataset 5] |
Also In
References
- “Paris Agreement,” conclusion date: December 12, 2015, United Nations Treaty Series Online, registration no. I-54113, https://treaties.un.org/pages/AdvanceSearch.aspx?tab=UNTS&clang=_en, accessed Jan. 23, 2020.
- International Energy Agency , CO2 Emissions from Fuel Combustion 2018 (Paris: International Energy Agency, 2018), doi:10.1787/co2_fuel-2018-en.
- Fuel Cell Technology Office , “Fuel Cells,” from Multi-Year Research, Development, and Demonstration Plan,” 2016, updated May 2017, https://www.energy.gov/sites/prod/files/2014/12/f19/fcto_myrdd_full_document.pdf, accessed Jan. 23, 2020.
- James, B.D., Huya-Kouadio, J.M., Houchins, C., and DeSantis, D.A. , “Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2018 Update,” 2019, http://www.sainc.com/what-we-do/energy-consulting, accessed Jan. 23, 2020.
- Hydrogen Council , “How Hydrogen Empowers the Energy Transition,” January 2017, https://hydrogencouncil.com/wp-content/uploads/2017/06/Hydrogen-Council-Vision-Document.pdf, accessed Jan. 23, 2020.
- Wilson, A., Kleen, G., Papageorgopoulos, D. , “Fuel Cell System Cost - 2017” from DOE Hydrogen and Fuel Cells Program Record, September 2017, https://www.hydrogen.energy.gov/pdfs/17007_fuel_cell_system_cost_2017.pdf, accessed Jan. 23, 2020.
- Zamel, N. and Li, X. , “Effect of Contaminants on Polymer Electrolyte Membrane Fuel Cells,” Progress in Energy and Combustion Science 37(3):292-329, 2011, doi:10.1016/j.pecs.2010.06.003.
- Li, H., Shi, Z., and Zhang, J. , “Impurities in Fuels and Air,” from Encyclopedia of Electrochemical Power Sources (Amsterdam: Elsevier, 2009), doi:10.1016/B978-044452745-5.00874-1.
- Misz, U., Talke, A., Heinzel, A., and Konrad, G. , “Sensitivity Analyses on the Impact of Air Contaminants on Automotive Fuel Cells,” Fuel Cells 16(4):444-462, 2016, doi:10.1002/fuce.201500159.
- Yuan, X.-Z., Li, H., Yu, Y., Jiang, M. et al. , “Diagnosis of Contamination Introduced by Ammonia at the Cathode in a Polymer Electrolyte Membrane Fuel Cell,” International Journal of Hydrogen Energy 37(17):12464-12473, 2012, doi:10.1016/j.ijhydene.2012.05.125.
- Cheng, X., Shi, Z., Glass, N., Zhang, L. et al. , “A Review of PEM Hydrogen Fuel Cell Contamination: Impacts, Mechanisms, and Mitigation,” Journal of Power Sources 165(2):739-756, 2007, doi:10.1016/j.powsour.2006.12.012.
- Nagahara, Y., Sugawa, S., and Shinohara, K. , “The Impact of Air Contaminants on PEMFC Performance and Durability,” Journal of Power Sources 182(2):422-428, 2008, doi:10.1016/j.powsour.2007.12.091.
- Misz, U. , “Evaluierung der kathodenseitigen Schädigungsmechanismen durch partikuläre und gasförmige Luftschadstoffe mit Hilfe von elektrochemischen Messmethoden zur Standzeiterhöhung von PEM-Brennstoffzellen (Kathodenluft II),” May 2015, https://www.iuta.de/igf-docs/ab_-_kathodenluft_ii_16325n_2012-06-29.pdf, accessed Jan. 23, 2020.
- Diersch, S. and Harenbrock, M. , “Contamination Control for LT PEM Fuel Cell Systems,” in 30th International Electric Vehicle Symposium (EVS30) Vol. 2 (Red Hook, Curran Associates, 2018), 731-739, ISBN 978-1-5108-6370-5.
- Talke, A., Misz, U., Konrad, G., Heinzel, A. et al. , “Influence of Urban Air on Proton Exchange Membrane Fuel Cell Vehicles - Long Term Effects of Air Contaminants in an Authentic Driving Cycle,” Journal of Power Sources 400:556-565, 2018, doi:10.1016/j.powsour.2018.08.063.
- Misz, U., Talke, A., Heinzel, A., and Beckhaus, P. , “Effects, Damage Characteristics and Recovery Potential of Traffic-induced Nitric Oxide Emissions in PEM Fuel Cells under Variable Operating Conditions,” Fuel Cells 18(5):594-601, 2018, doi:10.1002/fuce.201700214.
- Talke, A., Misz, U., Konrad, G., and Heinzel, A. , “Impact of Air Contaminants on Subscale Single Fuel Cells and on Automotive Short Stack,” Journal of Electrical Engineering 3:70-79, 2015, doi:10.17265/2328-2223/2015.02.003.
- Martin, C., Perrard, A., Joly, J.P., Gaillard, F. et al. , “Dynamic Adsorption on Activated Carbons of SO Traces in Air I: Adsorption Capacities,” Carbon 40(12):2235-2246, 2002, doi:10.1016/S0008-6223(02)00108-2.
- Wurth, S. , “Abschlussbericht Verbundvorhaben ALASKA: Teilprojekt: Ermittlung der Filterkapazität: Laufzeit des Vorhabens: 01.12.2014 - 31.05.2017,” MANN+HUMMEL Innenraumfilter GmbH & Co. KG, 2017, doi:10.2314/GBV:1018358625.
- Lenschow, P., Abraham, H.-J., Kutzner, K., Lutz, M. et al. , “Some Ideas about the Sources of PM10,” Atmospheric Environment 35(suppl 1), 2001, doi:10.106/S1352-2310(01)00122-4.
- Ehlers, C. , “Mobile Messungen - Messung und Bewertung von Verkehrsemissionen,” Schriften des Forschungszentrums Jülich, Reihe Energie & Umwelt / Energy & Environment 229, (Jülich, Zentralbibliothek Verlag, 2014), ISBN 978-3-89336-989-8.
- Talke, A. , “Der Einfluss von ausgewählten Luftschadstoffen auf die Brennstoffzelle unter fahrzeugnahen Betriebsbedingungen,” Ph.D. thesis, Fakultät für Ingenieurwissenschaften, Abteilung Maschinenbau, Universität Duisburg-Essen, 2017.
- Talke, A., Misz, U., Konrad, G., and Heinzel, A. , “Influence of Nitrogen Compounds on PEMFC: A Comparative Study,” Journal of The Electrochemical Society 165(6):F3111-F3117, 2018, doi:10.1149/2.0181806jes.
- Leyrer, G. , “Benzinverbrauch. Wie wir testen,” Auto, Motor und Sport, July 2010, 46-47.
- Heeb, N.V., Zimmerli, Y., Czerwinski, J., Schmid, P. et al. , “Reactive Nitrogen Compounds (RNCs) in Exhaust of Advanced PM-NOx Abatement Technologies for Future Diesel Applications,” Atmospheric Environment 45(18):3203-3209, 2011, doi:10.1016/j.atmosenv.2011.02.013.
- Tutsch, P. , “Industrielle Gemeinschaftsforschung auf dem Gebiet der Brennstoffzelle,” Motortechnische Zeitschrift 78(9):70-74, 2017, ISSN 0024-8525.
- James, B. , “2018 Cost projections of PEM Fuel Cell Systems for Automobiles and Medium-Duty-Vehicles,” Fuel Cell Technologies Office Webinar April 25, 2018, https://www.energy.gov/sites/prod/files/2018/04/f51/fcto_webinarslides_2018_costs_pem_fc_autos_trucks_042518.pdf, accessed Jan. 23, 2020.
- Korn, A., Weber, A., Pelz, A., and Alex, M. , “Ansaugsysteme” from Handbuch Verbrennungsmotor 7. Auflage Edition (Springer Vieweg: Wiesbaden, 2015), doi:10.1007/978-3-658-04678-1.
- Weber, A., Pelz, A., Kolczyk, M., Korn, A. et al. , “Ansaugluftsysteme und Saugrohre” from Kraftfahrtechnisches Taschenbuch 28. Auflage Edition (Springer Vieweg: Wiesbaden, 2014). ISBN:978-3-658-03800-7.
- Oelschlegel, H., Koch, T., Binder, K., and Scharrer, O. , “Verbrennungsmotoren” from Kraftfahrtechnisches Taschenbuch 28. Auflage Edition (Springer Vieweg: Wiesbaden, 2014). ISBN:978-3-658-03800-7.
- Wiedemann, G., Gottwick, U., Grähn, J.-M., and Kaiser, N. , “Brennstoffzellen für den KFZ-Antrieb” from Kraftfahrtechnisches Taschenbuch 28. Auflage Edition (Springer Vieweg: Wiesbaden, 2014). ISBN:978-3-658-03800-7.
- Staeck, R. , “Optimierung des Wasserhaushalts eines PEM-Brennstoffzellenaggregats,” Ph.D. thesis, Fakultät für Maschinenbau, Technische Universität Carolo-Wilhelmina, Braunschweig, (Göttingen, Cuvillier, 2013), ISBN 978-3-954-04756-7.
- Kramer, U., Ortloff, F., Stollenwerk, S., Thee, R. , “Defossilisierung des Transportsektors - Optionen und Voraussetzungen in Deutschland,” R586 (Frankfurt/Main, Forschungsvereinigung Verbrennungskraftmaschinen e.V., 2018), https://www.fvv-net.de/fileadmin/user_upload/medien/materialien/FVV__Kraftstoffe__Studie_Defossilisierung__R586_final_v.3_2019-06-14__DE.pdf, accessed Jan 23, 2020.
- Zawodzinski, T.A. Jr., Derouin, C., Radzinski, S., Sherman, R.J. et al. , “Water Uptake by and Transport Through Nafion® 117 Membranes,” Journal of The Electrochemical Society 140(4):1041-1047, 1993, doi:10.1149/1.2056194.
- Li, H., Tang, Y., Wang, Z., Shi, Z. et al. , “A Review of Water Flooding Issues in the Proton Exchange Membrane Fuel Cell,” Journal of Power Sources 178(1):103-117, 2008, doi:10.1016/j.powsour.2007.12.068.
- Hirschberg, H.G. , “Mischen, Trennen, Wärmeübertragung” from Handbuch Verfahrenstechnik und Anlagenbau (Berlin: Heidelberg, Springer, 1999). ISBN:978-3-642-58357-5.
- Simcenter Star CCM+ (Version 13) , Computer Software (Plano, TX: Siemens PLM Software, 2018).
- Larminie, J. and Dicks, A. , Fuel Cell Systems Explained Second Edition (Hoboken: John Wiley & Sons Ltd, 2013), doi:10.1002/9781118878330.fmatter.
- Ye, X. and Wang, Y. , “Measurement of Water Transport Properties through Membrane Electrode Assemblies Part I: Membranes,” Journal of the Electrochemical Society 154(7):B676-B682, 2007, doi:10.1149/1.2737379.
- Owejan, J.P., Trabold, T.A., and Mench, M.M. , “Oxygen Transport Resistance Correlated to Liquid Water Saturation in the Gas Diffusion Layer of PEM Fuel Cells,” International Journal of Heat and Mass Transfer 71:585-592, 2014, doi:10.1016/j.ijheatmasstransfer.2013.12.059.
- Yoshida, T. and Kojima, K. , “Toyota MIRAI Fuel Cell Vehicle and Progress Toward a Future Hydrogen Society,” The Electrochemical Society Interface 24(2):45-49, 2015, doi:10.1149/2.F03152if.
- Yumiya, H., Kizaki, M., and Asai, H. , “Toyota Fuel Cell System (TFCS),” World Electric Vehicle Journal 7(1):85-92, 2015, doi:10.3390/wevj7010085.
- Brandau, N. , “Analyse zur Zellinternen Befeuchtung eines Polymerelektrolytmembran-Brennstoffzellenstapels,” Ph.D. thesis, Fakultät für Maschinenbau, Technische Universität Carolo-Wilhelmina, Braunschweig, 2013.
- Scholta, J., Valter, V., and Wagner, T. , “Experimentelle und modellierungsbasierte Ermittlung der Anforderungen an die Kathodenluftqualität für LT-PEM Brennstoffzellen,” from Proceedings FVV 2018 Autumn Conference, R584 (Frankfurt/Main, Forschungsvereinigung Verbrennungskraftmaschinen e.V., 2018), 123-133.
- Simcenter 3D (Version 13) , Computer Software (Plano, TX: Siemens PLM Software, 2018).