This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Human-Driving Highway Overtake and Its Perceived Comfort: Correlational Study Using Data Fusion
Technical Paper
2020-01-1036
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
As an era of autonomous driving approaches, it is necessary to translate handling comfort - currently a responsibility of human drivers - to a vehicle imbedded algorithm. Therefore, it is imperative to understand the relationship between perceived driving comfort and human driving behaviour. This paper develops a methodology able to generate the information necessary to study how this relationship is expressed in highway overtakes. To achieve this goal, the approach revolved around the implementation of sensor Data Fusion, by processing data from CAN, camera and LIDAR from experimental tests. A myriad of variables was available, requiring individuating the key-information and parameters for recognition, classification and understanding of the manoeuvres. The paper presents the methodology and the role each sensor plays, by expanding on three main steps: Data segregation and parameter selection; Manoeuvre detection and processing; Manoeuvre classification and database generation. It also describes the testing setup, and posterior statistical analysis. To perform all the steps MATLAB was chosen, serving as an all-in-one environment equipped with the necessary toolboxes and libraries to perform filtering, camera perception, operate on matrixes, and database generation. The resultant algorithms can extract manoeuvres, identify their subsegments (e.g. cut-out, cut-in) and isolate their contribution on the vehicle dynamics and comfort, such as supplemental lateral acceleration. Furthermore, they allow the comparison of different manoeuvres, by grouping them into scenarios conceived through an altered decision tree, in which the selection criteria assimilated a human driver’s decision-making process. This methodology proved effective on extracting over 300 manoeuvres from 14 experiments, calculating all relative parameters, classifying them into statistically generated scenarios and originating a database useful for statistical analysis, machine learning and manoeuvre generation. In future development, increasing the amount of experiments and diversifying the vehicle types can create a more complete database and a more robust analysis shall be achieved.
Authors
- Massimiliana Carello - Politecnico di Torino
- Alessandro Ferraris - Politecnico di Torino
- Henrique de Carvalho Pinheiro - Politecnico di Torino
- Diego Cruz Stanke - Politecnico di Torino
- Giovanni Gabiati - Fiat Research Center
- Isabella Camuffo - Fiat Research Center
- Massimo Grillo - Fiat Research Center
Topic
Citation
Carello, M., Ferraris, A., de Carvalho Pinheiro, H., Cruz Stanke, D. et al., "Human-Driving Highway Overtake and Its Perceived Comfort: Correlational Study Using Data Fusion," SAE Technical Paper 2020-01-1036, 2020, https://doi.org/10.4271/2020-01-1036.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 | ||
Unnamed Dataset 5 | ||
Unnamed Dataset 6 | ||
Unnamed Dataset 7 | ||
Unnamed Dataset 8 |
Also In
References
- Carello , M. , Ferraris , A. , Airale , A. , and Fuentes , F. City Vehicle XAM 2.0: Design and Optimization of its Plug-In E-REV Powertrain SAE Technical Paper 2014-01-1822 2014 https://doi.org/10.4271/2014-01-1822
- Carello , M. , Brusaglino , G. , Razzetti , M. , Carlucci , A.P. , Doria , A. , and Onder , C.H. New Technologies Demonstrated at the Formula Electric and Hybrid Italy 2008 24th International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium and exhibition EVS24 Stavanger (Norway) May 13-16, 2009
- Filippo , N. , Carello , M. , D'Auria , M. , and Marcello , A. Optimization of IDRApegasus: Fuel Cell Hydrogen Vehicle SAE Technical Paper 2013-01-0964 2013 https://doi.org/10.4271/2013-010964
- Ferraris , A. ; Xu , S. ; Airale , A.G. ; Carello , M. Design and Optimization of XAM 2.0 Plug-In Powertrain International Journal of Vehicle Performance, Inderscience 3 25 2017 10.1504/IJVP.2017.10004910
- Carello , M. , Filippo , N. , and D'Ippolito , R. Performance Optimization for the XAM Hybrid Electric Vehicle Prototype SAE Technical Paper 2012-01-0773 2012 https://doi.org/10.4271/2012-01-0773
- Carello , M. , Ferraris , A. , Airale , A. , and Fuentes , F. City Vehicle XAM 2.0: Design and Optimization of its Plug-in E-REV Powertrain SAE Technical Paper 2014-01-1822 2014 https://doi.org/10.4271/2014-01-1822
- Ferraris , A. , Airale , A.G. , Messana , A. , Xu , S. , and Carello , M. The Regenerative Braking for a L7E Range Extender Hybrid Vehicle 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe October 16, 2018 10.1109/EEEIC.2018.8494000
- Carello , M. and Messana , A. IDRApegasus: A Fuel-Cell Prototype for 3000 km/L Computer-Aided Design and Applications, CAD Solutions, LLC 11(a) 15 2015
- de Carvalho Pinheiro , H. , Messana , A. , Sisca , L. , Ferraris , A. , Airale , A.G. , and Carello , M. Computational Analysis of Body Stiffness Influence on the Dynamics of Light Commercial Vehicles Mechanisms and Machine Science 73 2019 10.1007/978-3-030-20131-9_307
- Slim , R. , Sharaf , A. , Slim , J. , and Tanveer , S. https://www.udemy.com/course/applied-deep-learningtm-the-complete-self-driving-car-course/
- Hult , R. and Tabar , R.S. 2013
- Wei , J. , Dolan , J.M. , and Litkouhi , B. A Prediction- and Cost Function-Based Algorithm for Robust Autonomous Freeway Driving 2010 IEEE Intelligent Vehicles Symposium 2010 512 517 10.1109/IVS.2010.5547988
- Do , Q.H. , Tehrani , H. , Mita , S. , Egawa , M. et al. Human Drivers Based Active-Passive Model for Automated Lane Change IEEE Intelligent Transportation Systems Magazine 9 1 42 56 2017 10.1109/MITS.2016.2613913
- Altché , F. , Polack , P. , and de la Fortelle , A. 2017
- Lim , W. , Lee , S. , Sunwoo , M. , and Jo , K. Hierarchical Trajectory Planning of an Autonomous Car Based on the Integration of a Sampling and an Optimization Method IEEE Transactions on Intelligent Transportation Systems 19 2 613 626 2018 10.1109/TITS.2017.2756099
- de Carvalho Pinheiro , H. , Messana , A. , Sisca , L. , Ferraris , A. , Airale , A.G. , and Carello , M. Torque Vectoring in Electric Vehicles with in-Wheel Motors Mechanisms and Machine Science 73 2019 10.1007/978-3-030-20131-9_308
- Ferraris , A. , de Carvalho Pinheiro , H. , Galanzino , E. , Airale , A.G. , and Carello , M. All-Wheel Drive Electric Vehicle Performance Optimization: From Modelling to Subjective Evaluation on a Static Simulator Electric Vehicles International Conference, EV 2019 Bucharest, Romania October, 2019 10.1109/EV.2019.8893027
- Altche , F. , Qian , X. , and La Fortelle , A. An Algorithm for Supervised Driving of Cooperative Semi-Autonomous Vehicles IEEE Transactions on Intelligent Transportation Systems 18 12 3527 3539 2017 10.1109/TITS.2017.2736532
- Zhang , S. , Deng , W. , Zhao , Q. , Sun , H. , and Litkouhi , B. Dynamic Trajectory Planning for Vehicle Autonomous Driving IEEE International Conference on Systems, Man, and Cybernetics Oct. 13-16, 2013 978-1-4799-0652-9 10.1109/SMC.2013.709
- Carello , M. , Ferraris , A. , Bucciarelli , L. , Gabiati , G. , and Data , A. Customer Oriented Vehicle Dynamics Assessment for Autonomous Driving in Highway SAE Technical Paper 2019-01-1020 2019 https://doi.org/10.4271/2019-01-1020