This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
CO2 Neutral Heavy-Duty Engine Concept with RCCI Combustion Using Seaweed-based Fuels
Technical Paper
2020-01-0808
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
This paper focusses on the application of bioalcohols (ethanol and butanol) derived from seaweed in Heavy-Duty (HD) Compression Ignition (CI) combustion engines. Seaweed-based fuels do not claim land and are not in competition with the food chain. Currently, the application of high octane bioalcohols is limited to Spark Ignition (SI) engines. The Reactivity Controlled Compression Ignition (RCCI) combustion concept allows the use of these low carbon fuels in CI engines which have higher efficiencies associated with them than SI engines. This contributes to the reduction of tailpipe CO2 emissions as required by (future) legislation and reducing fuel consumption, i.e. Total-Cost-of-Ownership (TCO). Furthermore, it opens the HD transport market for these low carbon bioalcohol fuels from a novel sustainable biomass source.
In this paper, both the production of seaweed-based fuels and the application of these fuels in CI engines is discussed. Ethanol and butanol are considered as the most viable fuels derived from seaweed. The potential of these fuels has been evaluated for the dual-fuel RCCI mode regarding efficiency and NOx emissions. The operating conditions that have been varied are mainly the fuel blend ratio (BR), fuel injection timing, and EGR rate on both a HD single-cylinder and on a HD multi-cylinder engine.
The results for E85/diesel-RCCI demonstrate that CI engine-like efficiencies are feasible. The gross Indicated Thermal Efficiency (ITE) reaches up to 52% and 46.5% using E85 in a single-cylinder and a multi-cylinder engine, respectively. The first results using biomass based butanol show greater difficulty in realizing targeted efficiencies on the multi-cylinder engine due to the higher fuel reactivity and higher boiling temperature than ethanol. The gross ITE reaches up to 51.6% and 38.5% using butanol in a single-cylinder and a multi-cylinder engine, respectively.
The demonstrated potential of seaweed-based fuels is an important driver for upscaling the production process of these fuels. Furthermore, future development activities will focus on improving the brake thermal efficiency of the RCCI engine running on seaweed-based fuels. Improving the low reactivity fuel-air mixture preparation will be key to achieve this.
Authors
Topic
Citation
Seykens, X., Bekdemir, C., Han, J., Willems, R. et al., "CO2 Neutral Heavy-Duty Engine Concept with RCCI Combustion Using Seaweed-based Fuels," SAE Technical Paper 2020-01-0808, 2020, https://doi.org/10.4271/2020-01-0808.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 | ||
Unnamed Dataset 5 | ||
Unnamed Dataset 6 | ||
Unnamed Dataset 7 |
Also In
References
- Paris Agreement https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
- Environmental Protection Agency https://www.gpo.gov/fdsys/pkg/FR-2016-10-25/pdf/2016-21203.pdf
- European Commission 2011
- Sileghem , L. , Ickes , A. , Wallner , T. , and Verhelst , S. Experimental Investigation of a DISI Production Engine Fuelled with Methanol, Ethanol, Butanol and ISO Stoichiometric Alcohol Blends SAE Technical Paper 2015-01-0768 2015 https://doi.org/10.4271/2015-01-0768
- Splitter , D. and Szybist , J. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities SAE Int. J. Fuels Lubr. 7 1 29 47 2014 https://doi.org/10.4271/2014-01-1231
- Cairns , A. , Stansfield , P. , Fraser , N. , Blaxill , H. et al. A Study of Gasoline-Alcohol Blended Fuels in an Advanced Turbocharged DISI Engine SAE Int. J. Fuels Lubr 2 1 41 57 2009 https://doi.org/10.4271/2009-01-0138
- Chen , Z. , Yang , F. , Xue , S. , Wu , Z. et al. Impact of Higher N-Butanol Addition on Combustion and Performance of GDI Engine in Stoichiometric Combustion Energy Convers. Manag 106 385 392 2015
- Larsson , T. , Stenlaas , O. , and Erlandsson , A. Future Fuels for DISI Engines: A review on Oxygenated, Liquid Biofuels SAE Technical Paper 2019-01-0036 2019 https://doi.org/10.4271/2019-01-0036
- Rakopoulos , D.C. , Rakopoulos , C.D. , Hountalas , D.T. , Kakaras , E.C. et al. Investigation of the Performance and Emissions of Bus Engine Operating on Butanol/Diesel Fuel Blends Fuel 89 10 2781 2790 2010
- Liu , H. , Li , S. , Zheng , Z. , Jia , X. , and Yao , M. Effects of n-Butanol, 2-Butanol, and Methyl Octynoate Addition to Diesel Fuel on Combustion and Emissions over a Wide Range of Exhaust Gas Recirculation (EGR) Rates Appl Energy 112 246 256 2013
- Siwale , L. , Kristóf , L. , Adam , T. , Bereczky , A. et al. Combustion and Emission Characteristics of n-Butanol/Diesel Fuel Blend in a Turbocharged Compression Ignition Engine Fuel 107 409 418 2013
- Leermakers , C. , Bakker , P. , Somers , L. , de Goey , L. et al. Butanol-Diesel Blends for Partially Premixed Combustion SAE Int. J. Fuels Lubr. 6 1 217 229 2013 https://doi.org/10.4271/2013-01-1683
- Yanai , T. , Dev , S. , Han , X. , Zheng , M. et al. Impact of Fuelling Techniques on Neat n-Butanol Combustion and Emissions in a Compression Ignition Engine SAE Int. J. Engines 8 2 735 746 2015 https://doi.org/10.4271/2015-01-0808
- Han , X. , Zheng , M. , Tjong , J. , Li , T. et al. SAE Technical Paper 2015-01-1816 2015 https://doi.org/10.4271/2015-01-1816
- Benajes , J. , Garcia , A. , Monsalve-Serrano , J. , and Villalta , D. Benefits of E85 Versus Gasoline as a Low Reactive Fuel for an Automotive Diesel Engine Operating in Reactivity Controlled Compression Ignition Combustion Mode Energy Conversion and Management 159 2018 10.1016/j.enconman.2018.01.015
- Willems , F. , Kupper , F. , Ramesh , S. , Indrajuana , A. et al. Coordinated Air-Fuel Path Control in a Diesel-E85 RCCI Engine SAE Technical Paper 2019-01-1175 2019 https://doi.org/10.4271/2019-01-1175
- Doosje , E. , Willems , F. , and Baert , R. Experimental Demonstration of RCCI in Heavy-Duty Engines using Diesel and Natural Gas SAE Technical Paper 2014-01-1318 2014 https://doi.org/10.4271/2014-01-1318
- No , S. Application of Bio-Butanol in Advanced CI Engines-A Review Fuel 183 641 658 2016
- Soloiu , V. , Moncada , J.D. , Gaubert , R. , Knowles , A. Reactivity Controlled Compression Ignition Combustion and Emissions Using n-Butanol and Methyl Oleate Energy 165 2018 10.1016/j.energy.2018.09.181
- van Hal , J.W. ; Huijgen , W.J.J. ; López-Contreras , A.M. Opportunities and Challenges for Seaweed in the Biobased Economy Trends in Biotechnology 2014 32 5 231 233
- Bak , U.G. , Mols-Mortensen , A. , and Gregersen , O. Production Method and Cost of Commercial-Scale Offshore Cultivation of help in the Faroe Islands Using Multiple Partial Harvesting Algal Research 33 36 47 2018
- Lopez Contreras , A.M. ; Harmsen , P.F. ; Hou , X. ; Huijgen , W.J.J. ; Ditchfield , A.K. ; Bjornsdottir , B. ; Obata , O.O. Hal , J.W.V. , Bjerre , A.B. Biorefinery Approach to the Use of Macroalgae as Feedstock for Biofuels Algal Biofuels Pereira , L. CRC Press London 2017 103 139
- Reith , J.H. , Deurwaarder , E.P. , Curvers , A.P.W.M. , Kamersmans , P. , and Brandenburg , W. 2005
- https://arpa-e.energy.gov/?q=arpa-e-programs/mariner 2019
- Sondak , C.F.A. , Ang , P.O. , Beardall , J. , Bellgrove , A. et al. Carbon Dioxide Mitigation Potential of Seaweed Aquaculture Beds (SABs) Journal of Applied Phycology 29 5 2363 2373 2017
- Neusheul , P. Seaweed for War: California's World War I Help Industry Technology and Culture 30 3 561 583 1989
- Hou , X. , From , N. , Angelidaki , I. , Huijgen , W.J.J. , and Bjerre , A.B. Butanol Fermentation of the Brown Seaweed Laminaria Digitata by Clostridium beijerinckii DSM-6422 Bioresource Technology.
- van der Wal , H. ; Sperber , B.L.H.M. ; Houweling-Tan , B. ; Bakker , R.R.C. ; Brandenburg , W. ; López-Contreras , A.M. Production of Acetone, Butanol, and Ethanol from Biomass of the Green Seaweed Ulva lactuca Bioresource Technology 2013 128 431 437
- Huesemann , M.H. ; Kuo , L.J. ; Urquhart , L. ; Gill , G.A. ; Roesijadi , G. Acetone-Butanol Fermentation of Marine Macroalgae Bioresource Technology 2012 108 305 309
- Hou , X. , Hansen , J.H.E. , and Bjerre , A.B. Integrated Bioethanol and Protein Production from Brown Seaweed Laminaria digitata Bioresource Technology 197 310 317 2015
- Takeda , H. , Yoneyama , F. , Kawai , S. , Hashimoto , W. , and Murata , K. Bioethanol Production from Marine Biomass Alginate by Metabolically Engineered Bacteria Energy & Environmental Science 4 7 2575 2581 2011
- Gaspar , D.J. , West , B.H. , Ruddy , D. , Wilke , T.J. , Polikarpov , E. , Alleman , T.L. , George , A. , Monroe , E. , Davis , R.W. , Vardon , D. , Sutton , A.D. , Moore , C.M. , Benavides , P.T. , Dunn , J. , Biddy , M.J. , Jones , S.B. , Kass , M.D. , Pihl , J.A. , Pihl , J.A. , Debusk , M.M. , Sjoberg , M. , Szybist , J. , Sluder , C.S. , Fioroni , G. , and Pitz , W.J. 2019
- Northrop , W.F. , Bohac , S.V. , Chin , J.Y. , and Assanis , D.N. Comparison of Filter Smoke Number and Elemental Carbon Mass from Partially Premixed Low Temperature Combustion in a Direct-Injection Diesel Engine Journal of Engineering for Gas Turbines and Power 133 10 102804 2011
- Leermakers , C.A.J. , Somers , L.M.T. , and Johansson , B.H. Combustion Phasing Controllability with Dual Fuel Injection Timings SAE Technical Paper 2012-01-1575 2012 2012 https://doi.org/10:4271/2012-01-1575
- DelVescovo , D. , Wang , H. , Wissink , M. , and Reitz , R. Isobutanol as Both Low Reactivity and High Reactivity Fuels with Addition of Di-Tert Butyl Peroxide (DTBP) in RCCI Combustion SAE Int. J. Fuels Lubr. 8 2 329 343 2015 https://doi.org/10.4271/2015-01-0839
- Han , J. and Somers , L.M.T. Effects of Butanol Isomers on the Combustion and Emission Characteristics of a Heavy-Duty Engine in RCCI Mode SAE Technical Paper 2020-01-0307 2020 https://doi.org/10:4271/2020-01-0307