This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Numerical Evaluation of Gasoline Compression Ignition at Cold Conditions in a Heavy-Duty Diesel Engine
Technical Paper
2020-01-0778
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Achieving robust ignitability for compression ignition of diesel engines at cold conditions is traditionally challenging due to insufficient fuel vaporization, heavy wall impingement, and thick wall films. Gasoline compression ignition (GCI) has shown the potential to offer an enhanced NOx-particulate matter tradeoff with diesel-like fuel efficiency, but it is unknown how the volatility and reactivity of the fuel will affect ignition under very cold conditions. Therefore, it is important to investigate the impact of fuel physical and chemical properties on ignition under pressures and temperatures relevant to practical engine operating conditions during cold weather. In this paper, 0-D and 3-D computational fluid dynamics (CFD) simulations of GCI combustion at cold conditions were performed.
First, 0-D simulations were performed to evaluate the ignitability of different gasoline fuels and the impact of initial pressure and temperature on the autoignition behavior over a range of equivalence ratios. Gasolines with research octane numbers (RON) varying from 60 to 92 were investigated. The simulation results were then used to generate thermodynamic maps of ignitability for the fuels.
A Lagrangian-Eulerian modeling approach with Reynolds-Averaged Navier-Stokes (RANS) formulation was used for the 3-D CFD simulations. The CFD model validation was performed against experimental results from a 6-cylinder, 15 L heavy duty diesel engine operated at a compression ratio (CR) of 17.3 and a 600 rpm cold idle condition using a RON92 E0 gasoline. Experiments have also been conducted on the effect of injection strategy on engine performance and emissions. Closed-cycle 3-D CFD simulations were then carried out at the same cold idle condition for model validation and evaluation. The comparisons with the measured engine in-cylinder pressure, heat release rate, and emissions showed that the CFD model results were generally in good agreement with the experiments. Experimentally validated CFD simulations were further used to gain insight into the spray, ignition and combustion processes for GCI under these cold conditions by investigating the sensitivity of thermal boundary conditions and spray model constants.
Authors
Topic
Citation
Zhao, L., Ameen, M., Pei, Y., Zhang, Y. et al., "Numerical Evaluation of Gasoline Compression Ignition at Cold Conditions in a Heavy-Duty Diesel Engine," SAE Technical Paper 2020-01-0778, 2020, https://doi.org/10.4271/2020-01-0778.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 | ||
Unnamed Dataset 5 | ||
Unnamed Dataset 6 | ||
Unnamed Dataset 7 | ||
Unnamed Dataset 8 |
Also In
References
- Kalghatgi , G. and Johansson , B. Gasoline Compression Ignition Approach to Efficient, Clean and Affordable Future Engines Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering 232 1 118 138 2018 10.1177/0954407017694275
- Kodavasal , J. , Kolodziej , C.P. , Ciatti , S.A. , and Som , S. Computational Fluid Dynamics Simulation of Gasoline Compression Ignition Journal of Energy Resources Technology 137 3 032212 2015
- Wang , B. , Wang , Z. , Shuai , S. , Yu , L. et al. Extension of the Lower Load Limit in Dieseline Compression Ignition Mode Energy Procedia 75 2363 2370 2015 https://doi.org/10.1016/j.egypro.2015.07.492
- Wang , B. , Pamminger , M. , Vojtech , R. , and Wallner , T. Impact of Injection Strategies on Combustion Characteristics, Efficiency and Emissions of Gasoline Compression Ignition Operation in a Heavy-Duty Multi-Cylinder Engine International Journal of Engine Research 2018 10.1177/1468087418801660
- Pei , Y. , Pal , P. , Zhang , Y. , Traver , M. et al. Cfd-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer SAE Int. J. Adv. & Curr. Prac. in Mobility 1 1 166 179 2019 https://doi.org/10.4271/2019-01-0001
- Zhang , Y. , Kumar , P. , Pei , Y. , Traver , M. et al. An Experimental and Computational Investigation of Gasoline Compression Ignition Using Conventional and Higher Reactivity Gasolines in a Multi-Cylinder Heavy-Duty Diesel Engine SAE Technical Paper 2018-01-0226 2018 https://doi.org/10.4271/2018-01-0226
- Cho , K. , Zhao , L. , Ameen , M. , Zhang , Y. et al. Understanding Fuel Stratification Effects on Partially Premixed Compression Ignition (PPCI) Combustion and Emissions Behaviors SAE Technical Paper 2019-01-1145 2019 https://doi.org/10.4271/2019-01-1145
- Cung , K. , Ciatti , S. , Tanov , S. , and Andersson , Ö. Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine Frontiers in Mechanical Engineering 3 2017 10.3389/fmech.2017.00022
- Ciatti , S.A. Compression Ignition Engines - Revolutionary Technology That Has Civilized Frontiers All over the Globe from the Industrial Revolution into the Twenty-First Century Frontiers in Mechanical Engineering 1 5 2015 10.3389/fmech.2015.00005
- Kalghatgi , G.T. , Risberg , P. , and Ångström , H.-E. Advantages of Fuels with High Resistance to Auto-Ignition in Late-Injection, Low-Temperature, Compression Ignition Combustion SAE Technical Paper 2006-01-3385 2006 https://doi.org/10.4271/2006-01-3385
- Kodavasal , J. , Kolodziej , C.P. , Ciatti , S.A. , and Som , S. Effects of Injection Parameters, Boost, and Swirl Ratio on Gasoline Compression Ignition Operation at Idle and Low-Load Conditions International Journal of Engine Research 18 8 824 836 2016 10.1177/1468087416675709
- Zhao , L. An Experimental and Computational Study of Fuel Spray Interaction: Fundamentals and Engine Applications Michigan Technological University 2018
- Yang , X. , Kuo , T.-W. , Singh , K. , Hattar , R. et al. 2017 10.1115/ICEF2017-3630
- Guo , X. , Peng , X. , and Xu , S. Numerical Models for PEMFC Cold Start: A Review SAE Int. J. Alt. Power. 6 1 151 164 2017 https://doi.org/10.4271/2017-01-1182
- Yamada , T. , Gardner , D.V. , Bruno , B.A. , Zello , J.V. et al. The Effects of Engine Speed and Injection Pressure Transients on Gasoline Direct Injection Engine Cold Start SAE Technical Paper 2002-01-2745 2002 https://doi.org/10.4271/2002-01-2745
- Xu , Z. , Yi , J. , Wooldridge , S. , Reiche , D. et al. Modeling the Cold Start of the Ford 3.5 L V6 Ecoboost Engine SAE Int. J. Engines 2 1367 1387 2009 https://doi.org/10.4271/2009-01-1493
- Burke , D. , Foti , D. , Haller , J. , and Fedor , W.J. Fuel Rail Pressure Rise During Cold Start of a Gasoline Direct Injection Engine SAE Technical Paper 2012-01-0393 2012 https://doi.org/10.4271/2012-01-0393
- Zhao , L. , Ahuja , N. , Zhu , X. , Zhao , Z. et al. Characterization of Impingement Dynamics of Single Droplet Impacting on a Flat Surface SAE Technical Paper 2019-01-0064 2019 https://doi.org/10.4271/2019-01-0064
- Fritz , S.G. and Abata , D.L. A Photographic Study of Cold Start Characteristics of a Spark Assisted Diesel Engine Operating on Broad Cut Diesel Fuels SAE Technical Paper 871674 1987 https://doi.org/10.4271/871674
- Arumugam Sakunthalai , R. , Xu , H. , Liu , D. , Tian , J. et al. Impact of Cold Ambient Conditions on Cold Start and Idle Emissions from Diesel Engines SAE Technical Paper 2014-01-2715 2014 https://doi.org/10.4271/2014-01-2715
- Desantes , J.M. , García-Oliver , J.M. , Pastor , J.M. , and Ramírez-Hernández , J.G. Influence of Nozzle Geometry on Ignition and Combustion for High-Speed Direct Injection Diesel Engines under Cold Start Conditions Fuel 90 11 3359 3368 2011 https://doi.org/10.1016/j.fuel.2011.06.006
- Malaguti , S. , Fontanesi , S. , and Severi , E. Numerical Analysis of GDI Engine Cold-Start at Low Ambient Temperatures SAE Technical Paper 2010-01-2123 2010 https://doi.org/10.4271/2010-01-2123
- Malaguti , S. , Cantore , G. , Fontanesi , S. , Lupi , R. et al. CFD Investigation of Wall Wetting in a GDI Engine under Low Temperature Cranking Operations SAE Technical Paper 2009-01-0704 2009 https://doi.org/10.4271/2009-01-0704
- Mukhopadhyay , S. Direct Injection Compression Ignition Engine: Cold Start on Gasoline and Diesel SAE Technical Paper 2017-01-0699 2017 https://doi.org/10.4271/2017-01-0699
- Sellnau , M. , Foster , M. , Hoyer , K. , Moore , W. et al. Development of a Gasoline Direct Injection Compression Ignition (GDCI) Engine SAE Int. J. Engines 7 2 835 851 2014 https://doi.org/10.4271/2014-01-1300
- Fan , L. and Reitz , R. Spray and Combustion Modeling in Gasoline Direct-Injection Engines Automization and Sprays: Journal of the International Institutions for Liquid Atomization and Spray Systems 10 219 249 2000 10.1615/AtomizSpr.v10.i3-5.30
- Suh , E.S. and Rutland , C.J. Numerical Study of Fuel/Air Mixture Preparation in a GDI Engine SAE Technical Paper 1999-01-3657 1999 https://doi.org/10.4271/1999-01-3657
- Voice , A.K. , Tzanetakis , T. , and Traver , M. Lubricity of Light-End Fuels with Commercial Diesel Lubricity Additives SAE Technical Paper 2017-01-0871 2017 https://doi.org/10.4271/2017-01-0871
- Zhang , Y. , Kumar , K. , Traver , M. , and Popuri , S. 2020
- Richards , K.J. , Senecal , P.K. , and Pomraning , E. Converge Manual (Version 2.4) Madison, WI, USA Convergent Science Inc 2018
- Liu , Y.-D. , Jia , M. , Xie , M.-Z. , and Pang , B. Enhancement on a Skeletal Kinetic Model for Primary Reference Fuel Oxidation by Using a Semidecoupling Methodology Energy & Fuels 26 12 7069 7083 2012
- Mehl , M. , Pitz , W.J. , Westbrook , C.K. , and Curran , H.J. Kinetic Modeling of Gasoline Surrogate Components and Mixtures under Engine Conditions Proceedings of the Combustion Institute 33 1 193 200 2011 https://doi.org/10.1016/j.proci.2010.05.027
- Zhao , L. , Torelli , R. , Zhu , X. , Scarcelli , R. et al. An Experimental and Numerical Study of Diesel Spray Impingement on a Flat Plate SAE Int. J. Fuels Lubr. 10 2 407 422 2017 https://doi.org/10.4271/2017-01-0854
- Zhao , L. , Torelli , R. , Zhu , X. , Naber , J. et al. Evaluation of Diesel Spray-Wall Interaction and Morphology around Impingement Location SAE Technical Paper 2018-01-0276 2018 https://doi.org/10.4271/2018-01-0276
- Senecal , P.K. , Pomraning , E. , Richards , K.J. , and Som , S. Grid-Convergent Spray Models for Internal Combustion Engine Computational Fluid Dynamics Simulations Journal of Energy Resources Technology 136 1 012204 012204 2013 10.1115/1.4024861
- Som , S. , D'Errico , G. , Longman , D. , and Lucchini , T. Comparison and Standardization of Numerical Approaches for the Prediction of Non-Reacting and Reacting Diesel Sprays SAE Technical Paper 2012-01-1263 2012 https://doi.org/10.4271/2012-01-1263
- Reitz , R.D. Modeling Atomization Processes in High-Pressure Vaporizing Sprays Atomisation and Spray Technology 3 4 309 337 1987
- Liu , A.B. , Mather , D. , and Reitz , R.D. Modeling the Effects of Drop Drag and Breakup on Fuel Sprays SAE Technical Paper 930072 1993 https://doi.org/10.4271/930072
- Amsden , A.A. , O'rourke , P. , and Butler , T. Kiva-Ii: A Computer Program for Chemically Reactive Flows with Sprays NM (USA) Los Alamos National Lab 1989
- Patterson , M.A. and Reitz , R.D. Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission SAE Technical Paper 980131 1998 https://doi.org/10.4271/980131
- Schmidt , D.P. and Rutland , C. A New Droplet Collision Algorithm Journal of Computational Physics 164 1 62 80 2000 10.1006/jcph.2000.6568
- Golovitchev , V.I. , Nordin , N. , Jarnicki , R. , and Chomiak , J. 3-D Diesel Spray Simulations Using a New Detailed Chemistry Turbulent Combustion Model SAE Technical Paper 2000-01-1891 2000 https://doi.org/10.4271/2000-01-1891
- Golovitchev, V.I http://www.tfd.chalmers.se/~valeri/MECH.html
- Tang , Q. , Liu , H. , Li , M. , and Yao , M. Optical Study of Spray-Wall Impingement Impact on Early-Injection Gasoline Partially Premixed Combustion at Low Engine Load Applied Energy 185 708 719 2017 https://doi.org/10.1016/j.apenergy.2016.10.108
- Benajes , J. , Molina , S. , García , A. , Monsalve-Serrano , J. et al. Performance and Engine-out Emissions Evaluation of the Double Injection Strategy Applied to the Gasoline Partially Premixed Compression Ignition Spark Assisted Combustion Concept Applied Energy 134 90 101 2014 https://doi.org/10.1016/j.apenergy.2014.08.008
- Zincir , B. , Shukla , P. , Shamun , S. , Tuner , M. et al. Investigation of Effects of Intake Temperature on Low Load Limitations of Methanol Partially Premixed Combustion Energy & Fuels 33 6 5695 5709 2019 10.1021/acs.energyfuels.9b00660
- Woo , C. , Kook , S. , and Hawkes , E.R. Effect of Intake Air Temperature and Common-Rail Pressure on Ethanol Combustion in a Single-Cylinder Light-Duty Diesel Engine Fuel 180 9 19 2016 https://doi.org/10.1016/j.fuel.2016.04.005
- An , Y. , Jaasim , M. , Raman , V. , Hernández Pérez , F.E. et al. Homogeneous Charge Compression Ignition (Hcci) and Partially Premixed Combustion (Ppc) in Compression Ignition Engine with Low Octane Gasoline Energy 158 181 191 2018 https://doi.org/10.1016/j.energy.2018.06.057
- Lefebvre , A.H. and McDonell , V.G. 2017
- Wang , H. , Reitz , R.D. , and Yao , M. Comparison of Diesel Combustion Cfd Models and Evaluation of the Effects of Model Constants SAE Technical Paper 2012-01-0134 2012 https://doi.org/10.4271/2012-01-0134
- Kong , S.-C. , Han , Z. , and Reitz , R.D. The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulation SAE Technical Paper 950278 1995 https://doi.org/10.4271/950278
- Bravo , L. , Kurman , M. , Kweon , C. , Wijeyakulasuriya , S. et al. Lagrangian Modeling of Evaporating Sprays at Diesel Engine Conditions: Effects of Multi-Hole Injector Nozzles with Jp-8 Surrogates Army Research Lab Aberdeen Proving Ground MD Vehicle Technology Directorate 2014
- Beale , J.C. and Reitz , R.D. Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model Atomization and Sprays 9 6 1999 10.1615/AtomizSpr.v9.i6.40
- Som , S. Development and Validation of Spray Models for Investigating Diesel Engine Combustion and Emissions University of Illinois at Chicago 2009
- Magnotti , G.M. Modeling the Influence of Nozzle-Generated Turbulence on Diesel Sprays Georgia Institute of Technology 2017
- Li , Y. , Guo , H. , Wang , J.-X. , and Xu , H. The Comparative Study of Gasoline and N-Butanol on Spray Characteristics SAE Technical Paper 2014-01-2754 2014 https://doi.org/10.4271/2014-01-2754