This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Data-Driven Confidence Model for ADAS Object Detection
Technical Paper
2020-01-0695
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
The majority of road accident is due to human error. Advanced Driver Assistance System (ADAS) has the potential to reduce human error and improve driving safety. Customers have shown a growing acceptance for ADAS technology. With the rising demand for safety and comfortable driving experience, the global market for ADAS is expected to grow to $67 billion by 2025.
A reliable ADAS system requires an accurate and robust object-detection system. There is often a trade-off in tuning the system. On one hand, miss-detection can cause accidents; on the other hand, false-detection can result in ghost-braking and harm the driving experience. The ADAS system can access various information from different sources. However, a unified confidence model, which combines different indicators, has not been much studied in the literature. In this paper, we propose a data-driven method, which utilizes the features from radar, camera and the tracking system to produce a high-level confidence model. In addition, different regions regarding the ego vehicle usually have different emphases for detection error based on the system design requirements. And therefore, we can tune towards the design requirements by change the threshold of the classifier based on the region of interest.
The proposed method was validated with real-world driving data and shown a better performance based on the design requirement of the Adaptive Cruise Control (ACC) and Autonomous Emergency Braking (AEB) functions.
Authors
Topic
Citation
Yang, H., Zhang, D., Wang, D., and Zhou, J., "Data-Driven Confidence Model for ADAS Object Detection," SAE Technical Paper 2020-01-0695, 2020, https://doi.org/10.4271/2020-01-0695.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 | ||
Unnamed Dataset 5 |
Also In
References
- Stanton , N.A. and Salmon , P.M. Human Error Taxonomies Applied to Driving: A Generic Driver Error Taxonomy and Its Implications for Intelligent Transport Systems Safety Science 47 2 227 237 2009
- https://www.aptiv.com/media/article/path-to-autonomous-driving-begins-with-consumer-and-adas-adoption
- Grand View Research
- Zhong , Z. et al. Camera Radar Fusion for Increased Reliability in ADAS Applications Electronic Imaging 2018 17 258 251 2018
- SAE On-Road Automated Vehicle Standards Committee Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems SAE Standard J 3016 1 16 2014
- Zhou , Y. , et al. Image-Based Vehicle Analysis Using Deep Neural Network: A Systematic Study 2016 IEEE International Conference on Digital Signal Processing (DSP), IEEE 2016
- Ekström , L. , and Risberg , J.
- Chavez-Garcia , R.O. 2014
- Serfling , M. et al. Camera and Imaging Radar Feature Level Sensorfusion for Night Vision Pedestrian Recognition 2009 IEEE Intelligent Vehicles Symposium, IEEE 2009
- Ji , Z. , and Prokhorov D. Radar-Vision Fusion for Object Classification 2008 11th International Conference on Information Fusion, IEEE 2008
- Kämpchen , N. 2007
- Viktorová , L. and Šucha , M. Drivers’ Acceptance of Advanced Driver Assistance Systems-What to Consider International Journal for Traffic and Transport Engineering 8 3 320 333 2018
- Standard, ISO 26262-1
- Lee , S.-I. , Lee , H. , Abbeel , P. , and Andrew , Y.N. Efficient L~ 1 Regularized Logistic Regression AAAI 6 401 408 2006
- Otto , C. et al. A Joint Integrated Probabilistic Data Association Filter for Pedestrian Tracking across Blind Regions Using Monocular Camera and Radar 2012 IEEE Intelligent Vehicles Symposium, IEEE 2012
- Burkard , R.E. and Cela , E. Linear Assignment Problems and Extensions Handbook of Combinatorial Optimization Boston, MA Springer 1999 75 149
- Altendorfer , R. Observable Dynamics and Coordinate Systems for Automotive Target Tracking 2009 IEEE Intelligent Vehicles Symposium, IEEE 2009
- Nordenmark , V. , and Forsgren , A. Radar-Detection Based Classification of Moving Objects Using Machine Learning Methods 2015
- Rusu , R.B. Semantic 3d Object Maps for Everyday Manipulation in Human Living Environments KI-Künstliche Intelligenz 24 4 345 348 2010