This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Characterization and Quantification of In-Service Windshield Fracture Mechanisms and Evaluation of Laminate Sharp Impact Resistance as a Function of Construction
Technical Paper
2020-01-0607
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Examination of field-fractured windshields was conducted for purposes of determining the principle fracture mechanisms experienced in-use. Samples for the study were gathered both in the United States (New York) and in Europe (France) to explore whether the primary causes of failure were similar for the different geographic regions. In total, over two hundred individual field-fractures were obtained and examined for the study. Detailed fracture analysis of the parts was performed, and multiple fracture mechanisms were identified and quantified. It was found that the two most frequently observed failure modes were common for both regions with the most frequent cause (~70%) of fractures being due to sharp contact of the exterior ply, while Hertzian cone cracking of the outer ply was the second leading cause (~20%). Several other modes were also identified.
Given that sharp impact fracture was the dominant observed failure mode, a high-speed, sharp impact test method was developed. The method consisted of using compressed gas to accelerate a ~2g diamond tipped dart into test samples and the method was thus named “Blow Dart”. The test method created fractures that closely replicated the sharp impact fracture mechanisms observed in field parts.
Blow Dart impact testing of numerous laminate constructions was performed, and results showed that sharp impact resistance of laminates was directly related to the square of the outer ply thickness of the laminate. Inner ply thickness also played a role, with impact resistance improving with reduced inner ply thickness. It was therefore concluded that highly asymmetric constructions utilizing a thick outer ply and a thin inner ply are preferred to improve durability against the most prevalent field failure mode for windshields. Furthermore, it was found that substantial light-weighting vs. today’s conventional windshields could be achieved while concurrently improving sharp impact resistance.
Authors
Topic
Citation
Cleary, T., Tremper, T., Huten, T., Strong, D. et al., "Characterization and Quantification of In-Service Windshield Fracture Mechanisms and Evaluation of Laminate Sharp Impact Resistance as a Function of Construction," SAE Technical Paper 2020-01-0607, 2020, https://doi.org/10.4271/2020-01-0607.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 |
Also In
References
- Campfield , R. May 1, 2003 www.insurancejournal.com/services/newswire/2003/05/01/41550.htm
- www.carwindshields.info
- https://www.jnphillips.com/jnp-difference/auto-glass-experts
- Quain , J.R. Feb. 7, 2019 https://www.nytimes.com/2019/02/07/business/windshield-repairs.html
- Cleary , T. , Huten , T. , Strong , D. , and Walawender , C. Reliability Evaluation of Thin, Lightweight Laminates for Windshield Applications SAE Int. J. Passeng. Cars - Mech. Syst. 9 1 353 359 2016 https://doi.org/10.4271/2016-01-1401
- Gulati , S.T. , Hagy , H.E. , and Bayne , J.F. Delayed Cracking in Automotive Windshields the 7th International Symposium on Nondestructive Characterization of Materials Prague, Czech. Republic June 19-23, 1995
- Hertz , H. On Elastic Contact of Solids London Macmillan 1896
- Lawn , B.R. Fracture of Brittle Solids Second Cambridge, UK Cambridge University Press 1993
- Argon , A.S. , Hori , Y. , and Orowan , E. Indentation Strength of Glass J. Am. Ceram. Soc. 43 2 86 96 1960
- Knight , C.G. , Swain , M.V. Chaudri , M.M. Impact of Small Steel Spheres on Glass Surfaces J. Mater. Sci. 12 8 1573 1586 1977
- Chaudri , M.M. and Walley , S.M. Damage to Glass Surfaces by the Impact of Small Glass and Steel Spheres Philos. Mag. A 37 2 153 165 1978
- Cleary , T.M. , and Varner , J.R. Crack Initiation During Hertzian Indentation of Normal and Anomalous Glasses - A Study Using Fractography and Acoustic Emission Fractography of Glasses and Ceramics III, Ceramic Transactions 64 Westerville, OH The Am. Ceram. Soc. 1993
- Frechette , V.D. Failure Analysis of Brittle Materials Advances in Ceramics 28 Westerville, OH The Am. Ceram. Soc. 1990
- Cleary , T.M. and Nichols , R.T. Adhesive Induced Fracture of Automotive Glass Fractography of Glasses and Ceramics V, Ceramic Transactions 199 Westerville, OH The Am. Ceram. Soc. 2006
- Trate , D.J. , Griffin , J.A. , and Zickel , M. Windshield Investigation - Manufacturing and Installation Stresses SAE Technical Paper 1999-01-3160 1999 https://doi.org/10.4271/1999-01-3160
- Gulati , S.T. , Helfinstine , J.D. , and Roe , T.A. Strength Degradation of Automotive Windshield from Manufacturing to On-Road Service International Congress on Glass Edinburgh, Scotland July 1-6, 2001
- Grant , P.V. , Cantell , W.J. , McKenzie , H. , and Corkhill , P. The Damage Threshold of Laminated Glass Structures Int. J. Impact Eng. 21 737 746 1998
- Durkop , D. and Weibman , R. Investigation of the Mechanism of Stone Impact on Laminated Glass Windscreens XV, International Congress on Glass 1989 3a
- Cleary , T.M. , Huten , T. , Bhatia , V. , Qarosh , Y. et al. Lighter, Tougher, and Optically Advantaged: How an Innovative Combination of Materials Can Enable Better Car Windows Today American Society Bulletin 96 4 May 2017
- Linnhofer , D. , and Durkop , D. Resistance of Glazings to Stone Impact Proceedings AUTOTEST 96 Conference Spain 1996