This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Nonlinear Identification Modeling for PCCI Engine Emissions Prediction Using Unsupervised Learning and Neural Networks
Technical Paper
2020-01-0558
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Premixed charged compression ignition (PCCI) is an advanced combustion strategy, which has the potential to achieve ultra-low nitrogen oxide and soot emissions at high thermal efficiencies. PCCI combustion is characterized by a complex nonlinear chemical-physical process, which indicates that a physical description involves significant development times and also high computation cost. This paper presents a method to use cylinder pressure data and engine operations parameters for prediction of PCCI engine emissions by unsupervised learning and nonlinear identification techniques. The proposed method first uses principal component analysis (PCA) to reduce the dimension of the cylinder-pressure data. Based on the PCA analysis, a multi-input multi-out model was developed for nitrogen oxide and soot emission prediction by multi-layer perceptron (MLP) neural network. Before the training process, a second principal component analysis was done to reduce the input dimension with hyper-parameters thereby reducing memory requirements of the models. The algorithm is applied to an experimental data set from a single-cylinder light-duty engine with piezo injection system. By comparing the model predictions with experimental results, it is shown that the neural network coupling with the unsupervised learning method can successfully capture the nonlinear relationship between the state parameters and the emissions of PCCI combustion system.
Authors
Topic
Citation
Pan, W., Korkmaz, M., Beeckmann, J., and Pitsch, H., "Nonlinear Identification Modeling for PCCI Engine Emissions Prediction Using Unsupervised Learning and Neural Networks," SAE Technical Paper 2020-01-0558, 2020, https://doi.org/10.4271/2020-01-0558.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 |
Also In
References
- Dempsey , A. , Walker , N. , and Reitz , R. Effect of Piston Bowl Geometry on Dual Fuel Reactivity Controlled Compression Ignition (RCCI) in a Light-Duty Engine Operated with Gasoline/Diesel and Methanol/Diesel SAE Int. J. Engines 6 1 78 100 2013 https://doi.org/10.4271/2013-01-0264
- Saxena , S. and Bedoya , I.D. Fundamental Phenomena Affecting Low Temperature Combustion and HCCI Engines, High Load Limits and Strategies for Extending These Limits Progress in Energy and Combustion Science 39 5 457 488 2013 10.1016/j.pecs.2013.05.002
- Yao , M.F. , Zheng , Z.L. , and Liu , H.F. Progress and Recent Trends in Homogeneous Charge Compression Ignition (HCCI) Engines Progress in Energy and Combustion Science 35 5 398 437 2009 10.1016/j.pecs.2009.05.001
- Benajes , J. , Novella , R. , Garcia , A. , Domenech , V. et al. An Investigation on Mixing and Auto-Ignition Using Diesel and Gasoline in a Direct-Injection Compression-Ignition Engine Operating in PCCI Combustion Conditions SAE Int. J. Engines 4 2 2590 2602 2011 https://doi.org/10.4271/2011-37-0008
- Dempsey , A. , Walker , N. , and Reitz , R. Effect of Cetane Improvers on Gasoline, Ethanol, and Methanol Reactivity and the Implications for RCCI Combustion SAE Int. J. Fuels Lubr. 6 1 170 187 2013 https://doi.org/10.4271/2013-01-1678
- Torregrosa , A.J. , Broatch , A. , Garcia , A. , and Monico , L.F. Sensitivity of Combustion Noise and NO x and Soot Emissions to Pilot Injection in PCCI Diesel Engines Applied Energy 104 149 157 2013 10.1016/j.apenergy.2012.11.040
- Yao , C.D. , Pan , W. , and Yao , A.R. Methanol Fumigation in Compression-Ignition Engines: A Critical Review of Recent Academic and Technological Developments Fuel 209 713 732 2017 10.1016/j.fuel.2017.08.038
- Agarwal , A.K. , Singh , A.P. , and Maurya , R.K. Evolution, Challenges and Path Forward for Low Temperature Combustion Engines Progress in Energy and Combustion Science 61 1 56 2017 10.1016/j.pecs.2017.02.001
- Parks , I.I. , James , E. , Prikhodko , V. , Storey , J.M.E. et al. Emissions from Premixed Charge Compression Ignition (PCCI) Combustion and Affect on Emission Control Devices Catalysis Today 151 3-4 278 284 2010 10.1016/j.cattod.2010.02.053
- Babajimopoulos , A. , Assanis , D.N. , Flowers , D.L. , Aceves , S.M. et al. A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model with Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines International Journal of Engine Research 6 5 497 512 2005 10.1243/146808705X30503
- Coble , A.R. , Smallbone , A. , Bhave , A. , Mosbach , S. et al. Implementing Detailed Chemistry and in-Cylinder Stratification into 0/1-D IC Engine Cycle Simulation Tools SAE Technical Paper 2011-01-0849 2011 https://doi.org/10.4271/2011-01-0849
- Jochim , B. , Korkmaz , M. , and Pitsch , H. Scalar Dissipation Rate Based Multi-Zone Model for Early-Injected and Conventional Diesel Engine Combustion Combustion and Flame 175 138 154 2017 10.1016/j.combustflame.2016.08.003
- Deshmukh , A. , Korkmaz , M. , Davidovic , M. , Goeb , D. et al. Towards an Integral Combustion Model for Model-Based Control of PCCI Engines SAE Technical Paper 2019-24-0001 2019 https://doi.org/10.4271/2019-24-0001
- Asprion , J. , Chinellato , O. , and Guzzella , L. A Fast and Accurate Physics-Based Model for the NO x Emissions of Diesel Engines Applied Energy 103 221 233 2013 10.1016/j.apenergy.2012.09.038
- Barro , C. , Obrecht , P. , and Boulouchos , K. Development and Validation of a Virtual Soot Sensor: Part 1: Steady-State Engine Operation International Journal of Engine Research 15 6 719 730 2014 10.1177/1468087413512309
- d’Ambrosio , S. , Finesso , R. , Fu , L.Z. , Mittica , A. et al. A Control-Oriented Real-Time Semi-Empirical Model for the Prediction of NO x Emissions in Diesel Engines Applied Energy 130 265 279 2014 10.1016/j.apenergy.2014.05.046
- Deng , J. , Bastian , M. , and Stobart , R.K. Particulate Matter Prediction in Both Steady State and Transient Operation of Diesel Engines Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering 226 D2 260 274 2012 10.1177/0954407011418029
- Finesso , R. , Hardy , G. , Maino , C. , Marello , O. et al. A New Control-Oriented Semi-Empirical Approach to Predict Engine-out NO x Emissions in a Euro Vi 3.0 L Diesel Engine Energies 10 12 1978 2017 10.3390/en10121978
- Karaky , H. , Mauviot , G. , Tauzia , X. , and Maiboom , A. Development and Validation of a New Zero-Dimensional Semi-Physical NO x Emission Model for a DI Diesel Engine Using Simulated Combustion Process SAE Int. J. Engines 8 4 1924 1937 2015 https://doi.org/10.4271/2015-01-1746
- Alberer , D. , del Re , L. , Winkler , S. , and Langthaler , P. Virtual Sensor Design of Particulate and Nitric Oxide Emissions in a DI Diesel Engine SAE Technical Paper 2005-24-063 2005 https://doi.org/10.4271/2005-24-063
- Hafner , M. , Schuler , M. , Nelles , O. , and Isermann , R. Fast Neural Networks for Diesel Engine Control Design Control Engineering Practice 8 11 1211 1221 2000 10.1016/S0967-0661(00)00057-5
- Alcan , G. , Unel , M. , Aran , V. , Yilmaz , M. et al. Diesel Engine NO x Emission Modeling Using a New Experiment Design and Reduced Set of Regressors IFAC Papersonline 51 15 168 173 2018 10.1016/j.ifacol.2018.09.114
- Dahl , J. , Wassen , H. , Santin , O. , Herceg , M. et al. Model Predictive Control of a Diesel Engine with Turbo Compound and Exhaust after-Treatment Constraints IFAC Papersonline 51 31 349 354 2018 10.1016/j.ifacol.2018.10.072
- Li , H. , Butts , K. , Zaseck , K. , Liao-McPherson , D. et al. Emissions Modeling of a Light-Duty Diesel Engine for Model-Based Control Design Using Multi-Layer Perceptron Neural Networks SAE Technical Paper 2017-01-0601 2017 https://doi.org/10.4271/2017-01-0601
- Henningsson , M. , Tunestål , P. , and Johansson , R. A Virtual Sensor for Predicting Diesel Engine Emissions from Cylinder Pressure Data IFAC Proceedings Volumes 45 30 424 431 2012 10.3182/20121023-3-FR-4025.00063
- Mrosek , M. , Sequenz , H. , and Isermann , R. Control Oriented NO x and Soot Models for Diesel Engines IFAC Proceedings Volumes 43 7 234 239 2010 10.3182/20100712-3-DE-2013.00074
- Rezaei , J. , Shahbakhti , M. , Bahri , B. , and Aziz , A.A. Performance Prediction of HCCI Engines with Oxygenated Fuels Using Artificial Neural Networks Applied Energy 138 460 473 2015 10.1016/j.apenergy.2014.10.088
- Willems , F. , Doosje , E. , Engels , F. , and Seykens , X. Cylinder Pressure-Based Control in Heavy-Duty Egr Diesel Engines Using a Virtual Heat Release and Emission Sensor SAE Technical Paper 2010-01-0564 2010 https://doi.org/10.4271/2010-01-0564
- Zhang , Z. , Stadlbauer , S. , Waschl , H. , Fuerhapter , R. et al. Pressure Based Virtual Sensing of Transient Particulate Matter of CI Engines SAE Int. J. Engines 8 4 1678 1686 2015 https://doi.org/10.4271/2015-01-1635
- Janakiraman , V.M. , Nguyen , X. , and Assanis , D. Nonlinear Identification of a Gasoline HCCI Engine Using Neural Networks Coupled with Principal Component Analysis Applied Soft Computing 13 5 2375 2389 2013 10.1016/j.asoc.2013.01.006
- Willems , F. Is Cylinder Pressure-Based Control Required to Meet Future HD Legislation? IFAC-PapersOnLine 51 31 111 118 2018 10.1016/j.ifacol.2018.10.021
- Korkmaz , M. , Lakshmanan , R. , Falkenstein , T. , Beeckmann , J. et al. Experimental and Numerical Investigation of the Maximum Pressure Rise Rate for an LTC Concept in a Single Cylinder CI Engine SAE Technical Paper 2019-24-0023 2019
- James , G. , Witten , D. , Hastie , T. , and Tibshirani , R. An Introduction to Statistical Learning 112 Springer 2013
- Breiman , L. Random Forests Machine Learning 45 1 5 32 2001 10.1023/A:1010933404324