This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Achieving Diesel-Like Efficiency in a High Stroke-to-Bore Ratio DISI Engine under Stoichiometric Operation
Technical Paper
2020-01-0293
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
This work explores pathways to achieve diesel-like, high-efficiency combustion with stoichiometric 3-way catalyst compatible spark ignition (SI). A high stroke-to-bore engine design (1.5:1) with cooled exhaust gas recirculation (EGR) and high compression ratio (rc) was used to improve engine efficiency by up to 30% compared with a production turbocharged gasoline direct injection spark ignition engine. To achieve efficiency improvements, engine experiments were coupled with computational fluid dynamics simulations to guide and explain experimental trends between the original engine and the high stroke-to-bore ratio design (1.5:1). The effects of EGR and late intake valve closing (IVC) and fuel characteristics are investigated through their effects on knock mitigation. Direct injection of 91 RON E10 gasoline, 99 RON E0 gasoline, and liquified petroleum gas (i.e., propane/autogas) were evaluated with geometric rc ranging from 13.3:1 to 16.8:1. Engine experiments demonstrated 47% gross thermal efficiency, and 45% net thermal efficiency at stoichiometric engine operation, at up to 17 bar IMEP and 2000 r/min with 16.8:1 rc.
Authors
Topic
Citation
Boronat, V., Splitter, D., and Dal Forno Chuahy, F., "Achieving Diesel-Like Efficiency in a High Stroke-to-Bore Ratio DISI Engine under Stoichiometric Operation," SAE Technical Paper 2020-01-0293, 2020, https://doi.org/10.4271/2020-01-0293.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 | ||
Unnamed Dataset 5 | ||
Unnamed Dataset 6 | ||
Unnamed Dataset 7 |
Also In
References
- https://www.dieselnet.com/standards/eu/ld.php#stds
- https://www.dieselnet.com/standards/eu/hd.php#stds
- https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0427
- 2017 https://www.epa.gov/ghgemissions/overview-greenhouse-gases
- 2017 https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions
- Posada , F. , Chambliss , S. , and Blumberg , K. Costs of Emission Reduction Technologies for Heavy-Duty Diesel Vehicles 2016
- Zheng , M. , Asad , U. , Reader , G.T. , Tan , Y. , and Wang , M. Energy Efficiency Improvement Strategies for a Diesel Engine in Low-Temperature Combustion Int. J. Energy Res. 33 8 28 2009
- https://www.transportpolicy.net/standard/us-light-duty-emissions/
- https://www.transportpolicy.net/standard/california-light-duty-ghg/
- Sellnau , M. , Hoyer , K. , Moore , W. , Foster , M. et al. Advancement of GDCI Engine Technology for US 2025 CAFE and Tier 3 Emissions SAE Technical Paper 2018-01-0901 2018 https://doi.org/10.4271/2018-01-0901
- Sellnau , M. , Foster , M. , Moore , W. , Sinnamon , J. et al. Second Generation GDCI Multi-Cylinder Engine for High Fuel Efficiency and US Tier 3 Emissions SAE Int. J. Engines 9 2 2016 10.4271/2016-01-0760
- 1975 https://nepis.epa.gov/Exe/ZyPDF.cgi/P100W5C2.PDF?Dockey=P100W5C2.PDF
- Caris , D.F. and Nelson , E.E. A New Look at High Compression Engines SAE Technical Paper 590015 1959 https://doi.org/10.4271/590015
- Splitter , D. , Pawlowski , A. , and Wagner , R. A Historical Analysis of the Co-Evolution of Gasoline Octane Number and Spark-Ignition Engines Front. Mech. Eng. 1 16 2016 10.3389/fmech.2015.00016
- Nakai , E. , Goto , T. , Ezumi , K. , Tsumura , Y. , Endou , K. , Kanda , Y. , Urushihara , T. , Sueoka , M. , and Hitomi , M. MAZDA SKYACTIV-X 2.0L Gasoline Engine 28th Aachen Colloquium Automobile and Engine Technology 2019
- Splitter , D. and Szybist , J. Experimental Investigation of Spark-Ignited Combustion with High-Octane Biofuels and EGR. 2. Fuel and EGR Effects on Knock-Limited Load and Speed Energy Fuels 2014 https://doi.org/10.1021/ef401575e
- Wissink , M. , Splitter , D. , Dempsey , A. , Curran , S. et al. An Assessment of Thermodynamic Merits for Current and Potential Future Engine Operating Strategies* International J of Engine Research 18 1-2 155 169 2017 10.1177/1468087416686698
- Alger , T. , Mangold , B. , Roberts , C. , and Gingrich , J. The Interaction of Fuel Anti-Knock Index and Cooled EGR on Engine Performance and Efficiency SAE International Journal of Engines 5 3 1229 1241 2012
- Szybist , J. and Splitter , D. Effects of Fuel Composition on EGR Dilution Tolerance in Spark Ignited Engines SAE Int. J. Engines 9 2 2016 10.4271/2016-01-0715
- Szybist , J. , Wagnon , S. , Splitter , D. , Pitz , W. et al. The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines SAE Int. J. Engines 10 5 2017 10.4271/2017-24-0061
- Szybist , J. , Foster , M. , Moore , W.R. , Confer , K. et al. Investigation of Knock Limited Compression Ratio of Ethanol Gasoline Blends SAE Technical Paper 2010-01-0619 2010 2010 https://doi.org/10.4271/2010-01-0619
- Ikeya , K. , Takazawa , M. , Yamada , T. , Park , S. et al. Thermal Efficiency Enhancement of a Gasoline Engine SAE Int. J. Engines 8 4 1579 1586 2015 https://doi.org/10.4271/2015-01-1263
- Cho , S. , Song , C. , Oh , S. , Min , K. et al. An Experimental Study on the Knock Mitigation Effect of Coolant and Thermal Boundary Temperatures in Spark Ignited Engines SAE Technical Paper 2018-01-0213 2018 https://doi.org/10.4271/2018-01-0213
- Nakata , K. , Nogawa , S. , Takahashi , D. , Yoshihara , Y. et al. Engine Technologies for Achieving 45% Thermal Efficiency of S.I. Engine SAE Int. J. Engines 9 1 179 192 2016 https://doi.org/10.4271/2015-01-1896
- Heywood , J. Internal Combustion Engine Fundamentals Second McGraw Hill 978-1260116106
- Cavina , N. , Siviero , C. , and Suglia , R. Residual Gas Fraction Estimation: Application to a GDI Engine with Variable Timing and EGR SAE Technical Paper 2004-01-2943 2004 https://doi.org/10.4271/2004-01-2943
- Woschni , G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine SAE Transactions 76 3065 1967
- Gatowski , J.A. , Balles , E.N. , Chun , K.M. , Nelson , F.E. et al. Heat Release Analysis of Engine Pressure Data SAE transactions 961 977 1984
- Tunestål , P. TDC Offset Estimation from Motored Cylinder Pressure Data Based on Heat Release Shaping Oil & Gas Science and Technology-Revue d’IFP Energies nouvelles 66 4 705 716 2011
- Han , Z. and Reitz , R.D. Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models Combustion Science and Technology 106 4-6 267 295 1995
- Splitter , D. and Szybist , J. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities SAE International Journal of Fuels and Lubricants 7 1 29 47 2014
- Szybist , J.P. , Wagnon , S.W. , Splitter , D. , Pitz , W.J. , and Mehl , M. The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines SAE International Journal of Engines 10 5 2305 2318 2017
- Szybist , J.P. and Splitter , D.A. Understanding Chemistry-Specific Fuel Differences at a Constant RON in a Boosted SI Engine Fuel 217 370 381 2018
- Farrell , J. , Johnston , R. , and Androulakis , I. Molecular Structure Effects on Laminar Burning Velocities at Elevated Temperature and Pressure SAE Technical Paper 2004-01-2936 2004 https://doi.org/10.4271/2004-01-2936
- Sileghem , L. , Alekseev , V.A. , Vancoillie , J. , Nilsson , E.J.K. et al. Laminar Burning Velocities of Primary Reference Fuels and Simple Alcohols Fuel 115 32 40 2014
- Pawlowski , A. and Splitter , D. SI Engine Trends: A Historical Analysis with Future Projections SAE Technical Paper 2015-01-0972 2015 https://doi.org/10.4271/2015-01-0972