This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
A Two-Layer Soot Model for Hydrocarbon Fuel Combustion
Technical Paper
2020-01-0243
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
Experimental studies of soot particles showed that the intensity ratio of amorphous and graphite layers measured by Raman spectroscopy correlates to soot oxidation reactivities, which is very important for regeneration of the diesel particulate filters and gasoline particulate filters. This physical mechanism is absent in all soot models. In the present paper, a novel two-layer soot model was proposed that considers the amorphous and graphite layers in the soot particles. The soot model considers soot inception, soot surface growth, soot oxidation by O2 and OH, and soot coagulation. It is assumed that amorphous-type soot forms from fullerene. No soot coagulation is considered in the model between the amorphous- and graphitic-types of soot. Benzene is taken as the soot precursor, which is formed from acetylene. The model was implemented into a commercial CFD software CONVERGE using user defined functions. A diesel engine case was simulated. Reasonable good agreement was achieved in terms of intensity ratio of amorphous and graphite layers. 3D plots show that the distribution of ratio of amorphous and graphite soot mass correlates with equivalence ratio and the ages of soot particles.
Authors
Topic
Citation
Ge, H., He, R., and Zhao, P., "A Two-Layer Soot Model for Hydrocarbon Fuel Combustion," SAE Technical Paper 2020-01-0243, 2020, https://doi.org/10.4271/2020-01-0243.Also In
References
- Haynes , B.S. and Wagner , H.G. Soot Formation Progress in Energy and Combustion Science 7 229 273 1981
- Glassman , I. Soot Formation in Combustion Processes Symposium (International) on Combustion 295 311 1989
- Johnson , T.V. Review of Diesel Emissions and Control International Journal of Engine Research 10 275 285 2009
- Johnson , T. and Joshi , A. Review of Vehicle Engine Efficiency and Emissions SAE Technical Paper 2017-01-0907 2017 http://doi.org/10.4271/2017-01-0907
- Saito , C. , Nakatani , T. , Miyairi , Y. , Yuuki , K. et al. New Particulate Filter Concept to Reduce Particle Number Emissions SAE Technical Paper 2011-01-0814 2011 https://doi.org/10.4271/2011-01-0814
- Richter , J.M. , Klingmann , R. , Spiess , S. , and Wong , K.-F. Application of Catalyzed Gasoline Particulate Filters to GDI Vehicles SAE International Journal of Engines 5 1361 1370 2012 https://doi.org/10.4271/2012-01-1244
- Ito , Y. , Shimoda , T. , Aoki , T. , Yuuki , K. et al. Next Generation of Ceramic Wall Flow Gasoline Particulate Filter with Integrated Three Way Catalyst SAE Technical Paper 2015-01-1073 2015 https://doi.org/10.4271/2015-01-1073
- Birgel , A. , Ladommatos , N. , Aleiferis , P. , Zülch , S. et al. Deposit Formation in the Holes of Diesel Injector Nozzles: A Critical Review SAE Technical Paper 2008-01-2383 2008 https://doi.org/10.4271/2008-01-2383
- Kuboyama , T. , Moriyoshi , Y. , and Morikawa , K. Visualization and Analysis of LSPI Mechanism Caused by Oil Droplet, Particle and Deposit in Highly Boosted SI Combustion in Low Speed Range SAE International Journal of Engines 8 529 537 2015
- George , S. , Balla , S. , and Gautam , M. Effect of Diesel Soot Contaminated Oil on Engine Wear Wear 262 1113 1122 2007
- Frenklach , M. and Wang , H. Detailed Modeling of Soot Particle Nucleation and Growth Proceedings of the Combustion Institute 23 1559 1566 1991
- Shi , Y. , Ge , H.W. , Reitz , R.D. Computational Optimization of Internal Combustion Engines London Springer 2011 10.1007/978-0-85729-619-1
- Ge , H.W. , Reitz , R.D. , and Willems , W. Modeling the Effects of In-Cylinder Flows on HSDI Diesel Engine Performance and Emissions SAE International Journal of Fuels and Lubricants 1 293 311 2008 https://doi.org/10.4271/2008-01-0649
- Hiroyasu , H. and Kadota , T. Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines SAE Technical Paper 760129 1976 http://doi.org/10.4271/760129
- Kong , S.-C. , Sun , Y. , and Reitz , R.D. Modeling Diesel Spray Flame Liftoff, Sooting Tendency, and NOx Emissions Using Detailed Chemistry with Phenomenological Soot Model Journal of Engineering for Gas Turbines and Power 129 245 251 2007
- Kazakov , A. and Foster , D.E. Modeling of Soot Formation during DI Diesel Combustion Using a Multi-Step Phenomenological Model SAE Technical Paper 982463 1998 http://doi.org/10.4271/982463
- Tao , F. , Foster , D.E. , and Reitz , R.D. Characterization of Soot Particle Distribution in Conventional, Non-premixed DI Diesel Flame Using a Multi-Step Phenomenological Soot Model Proceedings of the Combustion Institute 31 2991 2998 2007
- Vishwanathan , G. and Reitz , R.D. Modeling Soot Formation Using Reduced Polycyclic Aromatic Hydrocarbon Chemistry in N-Heptane Lifted Flames with Application to Low Temperature Combustion Journal of Engineering for Gas Turbines and Power 131 032801 2009
- Jia , M. , Peng , Z.J. , and Xie , M.Z. Numerical Investigation of Soot Reduction Potentials with Diesel Homogeneous Charge Compression Ignition Combustion by an Improved Phenomenological Soot Model Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 223 395 412 2009
- Kaminaga , T. , Kusaka , J. , and Ishii , Y. A Three-Dimensional Numerical Study on Exhaust Gas Emissions from a Medium-Duty Diesel Engine Using a Phenomenological Soot Particle Formation Model Combined with Detailed Chemistry International Journal of Engine Research 9 283 296 2008
- Mauss , F. Entwicklung eines kinetischen Modells der Russbildung mit schneller Polymerisation RWTH-Aachen 1998
- Mauss , F. , Schäfer , T. , and Bockhorn , H. Inception and Growth of Soot Particles in Dependence on the Surrounding Gas Phase Combustion and Flame 99 697 705 1994 https://doi.org/10.1016/0010-2180(94)90064-7
- Kazakov , A. , Wang , H. , and Frenklach , M. Detailed Modeling of Soot Formation in Laminar Premixed Ethylene Flames at a Pressure of 10 Bar Combustion and Flame 100 111 120 1995
- Kazakov , A. and Frenklach , M. Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation with the Method of Moments and Application to High-Pressure Laminar Premixed Flames Combustion and Flame 114 484 501 1998
- Hong , S. , Wooldridge , M.S. , Im , H.G. , Assanis , D.N. , and Pitsch , H. Development and Application of a Comprehensive Soot Model for 3D CFD Reacting Flow Studies in a Diesel Engine Combustion and Flame 143 11 26 2005 https://doi.org/10.1016/j.combustflame.2005.04.007
- Fraioli , V. , Beatrice , C. , and Lazzaro , M. Soot Particle Size Modelling in 3D Simulations of Diesel Engine Combustion Combustion Theory and Modelling 15 863 892 2011 10.1080/13647830.2011.578662
- Mueller , M.E. , Blanquart , G. , and Pitsch , H. A Joint Volume-Surface Model of Soot Aggregation with the Method of Moments Proceedings of the Combustion Institute 32 785 792 2009 https://doi.org/10.1016/j.proci.2008.06.207
- Salenbauch , S. , Cuoci , A. , Frassoldati , A. , Saggese , C. et al. Modeling Soot Formation in Premixed Flames Using an Extended Conditional Quadrature Method of Moments Combustion and Flame 162 2529 2543 2015 https://doi.org/10.1016/j.combustflame.2015.03.002
- Kumar , S. and Ramkrishna , D. On the Solution of Population Balance Equations by Discretization-I a Fixed Pivot Technique Chemical Engineering Science 51 1311 1332 1996
- Wen , Z. , Yun , S. , Thomson , M. , and Lightstone , M. Modeling Soot Formation in Turbulent Kerosene/Air Jet Diffusion Flames Combustion and Flame 135 323 340 2003
- Wen , J.Z. , Thomson , M. , Park , S. , Rogak , S. , and Lightstone , M. Study of Soot Growth in a Plug Flow Reactor Using a Moving Sectional Model Proceedings of the Combustion Institute 30 1477 1484 2005
- Strickland , T. , Kokjohn , S.L. The Use of a Stochastic Soot Model in Postprocessing International Multidimensional Engine Modeling User’s Group Meeting 2019
- Celnik , M. , Raj , A. , West , R. , Patterson , R. , and Kraft , M. Aromatic Site Description of Soot Particles Combustion and Flame 155 161 180 2008 https://doi.org/10.1016/j.combustflame.2008.04.011
- Balthasar , M. and Kraft , M. A Stochastic Approach to Calculate the Particle Size Distribution Function of Soot Particles in Laminar Premixed Flames Combustion and Flame 133 289 298 2003 https://doi.org/10.1016/S0010-2180(03)00003-8
- Wang , B. , Mosbach , S. , Schmutzhard , S. , Shuai , S. et al. Modelling Soot Formation from Wall Films in a Gasoline Direct Injection Engine Using a Detailed Population Balance Model Applied Energy 163 154 166 2016 https://doi.org/10.1016/j.apenergy.2015.11.011
- Yan , J. , Zhang , Y. , Kim , P. , and Pinczuk , A. Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene Physical Review Letters 98 166802 2007
- Mohiuddin , T. , Lombardo , A. , Nair , R. , Bonetti , A. et al. Uniaxial Strain in Graphene by Raman Spectroscopy: G Peak Splitting, Grüneisen Parameters, and Sample Orientation Physical Review B 79 205433 2009
- Huang , M. , Yan , H. , Chen , C. , Song , D. , Heinz , T.F. , Hone , J. Phonon Softening and Crystallographic Orientation of Strained Graphene Studied by Raman Spectroscopy Proceedings of the National Academy of Sciences 106 7304 8 2009 10.1073/pnas.0811754106
- Sadezky , A. , Muckenhuber , H. , Grothe , H. , Niessner , R. , and Pöschl , U. Raman Microspectroscopy of Soot and Related Carbonaceous Materials: Spectral Analysis and Structural Information Carbon 43 1731 1742 2005 10.1016/j.carbon.2005.02.018
- Song , J. , Alam , M. , and Boehman , A.L. Impact of Alternative Fuels on Soot Properties and Dpf Regeneration Combustion Science and Technology 179 1991 2037 2007 10.1080/00102200701386099
- Zhang , Y. and Boehman , A.L. Oxidation Behavior of Soot Generated from the Combustion of Methyl 2-Butenoate in a Co-Flow Diffusion Flame Combustion and Flame 160 112 119 2013 10.1016/j.combustflame.2012.08.010
- Knauer , M. , Schuster , M.E. , Su , D. , Schlogl , R. et al. Soot Structure and Reactivity Analysis by Raman Microspectroscopy, Temperature-Programmed Oxidation, and High-Resolution Transmission Electron Microscopy The journal of physical chemistry A 113 13871 13880 2009 10.1021/jp905639d
- Ivleva , N.P. , Messerer , A. , Yang , X. , Niessner , R. , and Pöschl , U. Raman Microspectroscopic Analysis of Changes in the Chemical Structure and Reactivity of Soot in a Diesel Exhaust Aftertreatment Model System Environmental science & technology 41 3702 3707 2007 10.1021/es0612448
- Al-Qurashi , K. and Boehman , A.L. Impact of Exhaust Gas Recirculation (EGR) on the Oxidative Reactivity of Diesel Engine Soot Combustion and Flame 155 675 695 2008 10.1016/j.combustflame.2008.06.002
- Tuinstra , F. and Koenig , J.L. Raman Spectrum of Graphite The Journal of Chemical Physics 53 1126 1130 1970
- Ferrari , A.C. and Robertson , J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon Physical Review B 61 14095 2000
- Wei , J. , Song , C. , Lv , G. , Song , J. et al. A Comparative Study of the Physical Properties of In-Cylinder Soot Generated from the Combustion of N-Heptane and Toluene/N-Heptane in a Diesel Engine Proceedings of the Combustion Institute 35 1939 1946 2015 10.1016/j.proci.2014.06.011
- Han , C. , Liu , Y. , Liu , C. , Ma , J. , and He , H. Influence of Combustion Conditions on Hydrophilic Properties and Microstructure of Flame Soot The Journal of Physical Chemistry A 116 4129 4136 2012 10.1021/jp301041w
- Schmid , J. , Grob , B. , Niessner , R. , and Ivleva , N.P. Multiwavelength Raman Microspectroscopy for Rapid Prediction of Soot Oxidation Reactivity Analytical chemistry 83 1173 1179 2011 10.1021/ac102939w
- Russo , C. and Ciajolo , A. Effect of the Flame Environment on Soot Nanostructure Inferred by Raman Spectroscopy at Different Excitation Wavelengths Combustion and Flame 162 2431 2441 2015 10.1016/j.combustflame.2015.02.011
- Ge , H. , Ye , Z. , and He , R. Raman Spectroscopy of Diesel and Gasoline Engine-out Soot Using Different Laser Power Journal of Environmental Sciences 79 74 80 2018 https://doi.org/10.1016/j.jes.2018.11.001
- Nagle , J. , Strickland-Constable , R.F. Oxidation of Carbon between 1000-2000C Proceeding of the 5th Conference on Carbon 1962
- Richards , K. , Senecal , P. , and Pomraning , E. CONVERGE 2.4 Manual Madison, WI Convergent Science, Inc. 2017
- Golovitchev , V.I. http://www.tfd.chalmers.se/~valeri/MECH 2019
- Beale , J.C. and Reitz , R.D. Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model Atomization and sprays 9 1999
- Amsden , A.A. , O'rourke , P. , and Butler , T. 1989
- Faeth , G. Evaporation and Combustion of Sprays Progress in Energy and Combustion Science 9 1 76 1983
- Schmidt , D.P. and Rutland , C. A New Droplet Collision Algorithm Journal of Computational Physics 164 62 80 2000
- Naber , J. and Reitz , R.D. Modeling Engine Spray/Wall Impingement SAE Technical Paper 880107 1988 https://doi.org/10.4271/880107
- Han , Z. and Reitz , R.D. Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models Combustion Science and Technology 106 267 295 1995
- Ge , H. and Cho , N.H. Effects of Numerical Models on Prediction of Cylinder Pressure Ringing in a DI Diesel Engine SAE Technical Paper 2018-01-0194 2018 https://doi.org/10.4271/2018-01-0194
- Fang , H.L. , Lance , MJ Influence of Soot Surface Changes on DPF Regeneration SAE Technical Paper 2004-01-3043 2004 https://doi.org/10.4271/2004-01-3043
- Apicella , B. , Pré , P. , Alfè , M. , Ciajolo , A. et al. Soot Nanostructure Evolution in Premixed Flames by High Resolution Electron Transmission Microscopy (HRTEM) Proceedings of the Combustion Institute 35 1895 1902 2015 10.1016/j.proci.2014.06.121