This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Effect Analysis for the Uncertain Parameters on Self-Piercing Riveting Simulation Model Using Machine Learning Model
Technical Paper
2020-01-0219
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Self-piercing rivets (SPR) are efficient and economical joining methods used in the manufacturing of lightweight automotive bodies. The finite element method (FEM) is a potentially effective way to assess the joining process of SPRs. However, uncertain parameters could lead to significant mismatches between the FEM predictions and physical tests. Thus, a sensitivity study on critical model parameters is important to guide the high-fidelity modeling of the SPR insertion process. In this paper, an axisymmetric FEM model is constructed to simulate the insertion process of the SPR using LS-DYNA/explicit. Then, several surrogate models are evaluated and trained using machine learning methods to represent the relations between selected inputs (e.g., material properties, interfacial frictions, and clamping force) and outputs (cross-section dimensions). It is found that it is feasible to train surrogate models with high accuracy to replace the time-consuming and computationally expensive CAE simulations with a limited sampling volume. Based on trained surrogate models, an extensive sensitivity study is conducted to thoroughly understand the effect of a set of model parameters. This work provides a solid foundation for data-modelling and CAE model calibration for the SPR insertion process.
Authors
Topic
Citation
Fang, Y., Huang, L., Zhan, Z., Huang, S. et al., "Effect Analysis for the Uncertain Parameters on Self-Piercing Riveting Simulation Model Using Machine Learning Model," SAE Technical Paper 2020-01-0219, 2020, https://doi.org/10.4271/2020-01-0219.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 |
Also In
References
- Li , Y. , Ma , Y. , Lou , M. , Lei , H. , and Lin , Z. Advances in Welding and Joining Processes of Multi-Material Lightweight Car Body Chinese Journal of Mechanical Engineering 52 24 1 23 2016 10.3901/JME.2016.24.001
- Li , D. , Chrysanthou , A. , Patel , I. , and Williams , G. Self-Piercing Riveting - A Review The International Journal of Advanced Manufacturing Technology 92 1777 1824 2017 10.1007/s00170-017-0156-x23
- https://www.assemblymag.com/articles/92728-assembling-fords-aluminum-wonder-truck
- Carandente , M. , Dashwood , R.J. , Masters , I.G. , and Han , L. Improvements in Numerical Simulation of the SPR Process Using a Thermo-Mechanical Finite Element Analysis Journal of Materials Processing Technology 236 148 161 2016 10.1016/j.jmatprotec.2016.05.001
- Porcaro , R. , Langseth , M. , Weyer , S. , and Hooputra , H. An Experimental and Numerical Investigation on Self-Piercing Riveting International Journal of Material Forming 1 1 1307 1310 2008 10.1007/s12289-008-0143-8
- Bouchard , P.O. , Laurent , T. , and Tollier , L. Numerical Modeling of Self-Pierce Riveting - From Riveting Process Modeling Down to Structural Analysis Journal of Materials Processing Technology 202 1-3 290 300 2008 10.1016/j.jmatprotec.2007.08.077
- Hoang , N.H. , Porcaro , R. , Langseth , M. , and Hanssen , A.G. Self-Piercing Riveting Connections Using Aluminium Rivets International Journal of Solids and Structures 47 3-4 427 439 2010 10.1016/j.ijsolstr.2009.10.009
- Mori , K. , Kato , T. , Abe , Y. , and Ravshanbek , Y. Plastic Joining of Ultra High Strength Steel and Aluminium Alloy Sheets by Self-Piercing Rivet CIRP Annals - Manufacturing Technology 55 1 283 286 2006 10.1016/S0007-8506(07)60417-X
- Casalino , G. , Rotondo , A. , and Ludovico , A. On the Numerical Modelling of the Multiphysics Self-Piercing Riveting Process Based on the Finite Element Technique Advances in Engineering Software 39 9 787 795 2008 10.1016/j.advengsoft.2007.12.002
- Huang , L. , Lasecki , J. , Guo , H. , and Su , X. Finite Element Modeling of Dissimilar Metal Self-piercing Riveting Process SAE Int. J. Mater. Manf. 7 3 698 705 2014 10.4271/2014-01-1982
- Huang , L. , Moraes , J.F.C. , Sediako , D.G. , Jordon , J.B. et al. Finite-Element and Residual Stress Analysis of Self-Pierce Riveting in Dissimilar Metal Sheets Journal of Manufacturing Science and Engineering 139 2 2016 10.1115/1.4034437
- Huang , L. , Wu , Y. , Huff , G. , Huang , S. , et al. Simulation of Self-Piercing Rivet Insertion Using Smoothed Particle Galerkin Method 15th International LS-DYNA Users Conference
- Coleman , H.W. and Steele , W.G. Experimentation and Uncertainty Analysis for Engineers Journal of Engineering for Industry 113 2 343 344 1999 10.1115/1.2899692
- Fang , Y. , Zhan , Z. , Yang , J. , and Liu , X. A Mixed-Kernel-Based Support Vector Regression Model for Automotive Body Design under Uncertainty ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering 3 4 041008 2017 10.1115/1.4036990
- Zhang , X.Y. , Trame , M. , Lesko , L. , and Schmidt , S. Sobol Sensitivity Analysis: A Tool to Guide the Development and Evaluation of Systems Pharmacology Models CPT: Pharmacometrics & Systems Pharmacology 4 2 69 79 2015 10.1002/psp4.6
- Vidal , C. , Filho , M. , Takahashi , W. , and Desouza , P. Application of Sensitivity Analysis for Optimization of a Satellite Structure Journal of Spacecraft and Rockets 37 3 416 418 2000 10.2514/2.3576
- Ge , L. , Kim , N.H. , Bourne , G.R. , and Sawyer , W.G. Material Property Identification and Sensitivity Analysis Using Indentation and FEM ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 1 32 481 489 2006 10.1115/DETC2006-99329
- Jones , A.C. and Wilcox , R.K. Finite Element Analysis of the Spine: Towards a Framework of Verification, Validation and Sensitivity Analysis Medical Engineering and Physics 30 10 1287 1304 2008 10.1016/j.medengphy.2008.09.006
- Andrea , S. , Paola , A. , Ivano , A. , Francesca , C. et al. Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the Total Sensitivity Index Computer Physics Communications 181 2 259 270 10.1016/j.cpc.2009.09.018
- Viana , F.A.C. , Venter , G. , and Balabanov , V. An Algorithm for Fast Optimal Latin Hypercube Design of Experiments International Journal for Numerical Methods in Engineering 82 2 1 10 2010 10.1002/nme.2750
- Rippa , S. An Algorithm for Selecting a Good Value for the Parametercin Radial Basis Function Interpolation Advances in Computational Mathematics 11 2-3 193 210 1999 10.1023/a:1018975909870
- Kleijnen , J.P.C. Kriging Metamodeling in Simulation: A Review European Journal of Operational Research 192 3 707 716 2007 10.1016/j.ejor.2007.10.013
- Chen , C. , Zhan , Z. , Yu , H. , and Zhao , H. An Efficient Decision-Making Framework for Hybrid Metamodeling Engineering Optimization 51 10 1761 1776 2019 10.1080/0305215X.2018.1547717
- Simpson , T.W. , Mauery , T.M. , Korte , J.J. , and Mistree , F. Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization AIAA Journal 39 12 2233 2241 10.2514/3.15017
- Stefano , M. and Bruno , S. UQLab: A Framework for Uncertainty Quantification in MATLAB the 2nd International Conference on Vulnerability and Risk Analysis and Management United Kingdom July 13-16 2014 2554 2563 10.1061/9780784413609.257
- https://www.uqlab.com/sensitivity-sobol-indices