This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Development of a Physically/Chemically Based Approach for 2-Stage Ignition Delay Calculation in Medium Speed Dual-Fuel Engines
Technical Paper
2019-24-0068
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
This paper presents a newly developed 2-stage ignition delay model for pilot ignited medium speed dual-fuel (DF) engines. This provides the first major step towards a new combustion model for the prediction of the DF combustion in the context of 0D/1D simulation. The combustion models known from literature are based on empirical models of a steady jet. Here in most cases the package model of Hiroyasu is used. Because in a DF engine the injection timing of the diesel fuel is very early and the injection ends before ignition, the spray behavior differs from that of a steady jet. Especially the end-of-injection transients lead to stronger entrainment and therefore affect the ignition delay. In addition, the presence of natural gas in the cylinder extends the ignition delay at the chemical level. In this paper the 1D transient spray model of Musculus and Kattke is used to describe the spray behavior. The spray model is extended with a mixing controlled evaporation model to derive the temperature distribution inside the spray. A 2-stage ignition delay model with low temperature heat release is developed based on extensive reaction kinetic simulations with an extended n-heptane mechanism. A comparison with measurements of a single cylinder research engine shows good agreement of the model, whereby no parameter had to be adjusted, but could be taken from the literature. Moreover, a comparison of 1-stage and 2-stage ignition delay calculation shows the benefit of the outlined approach.
Authors
Topic
Citation
Frerichs, J. and Eilts, P., "Development of a Physically/Chemically Based Approach for 2-Stage Ignition Delay Calculation in Medium Speed Dual-Fuel Engines," SAE Technical Paper 2019-24-0068, 2019, https://doi.org/10.4271/2019-24-0068.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 |
Also In
References
- Menage , A. , Gruand , A. , Berg , P. , and Golloch , R. The New Dual Fuel Engine 35/44 DF from MAN Diesel & Turbo SE CIMAC Congress Shanghai 2013
- Troberg , M. , Portin , K. , and Jarvi , A. Update on Wärtsilä 4-Stroke Gas Product Development CIMAC Congress Shanghai 2013
- Basshuysen , R.V. Erdgas und erneuerbares Methan für den Fahrzeugantrieb Wiesbaden Springer Vieweg 2015 https://doi.org/10.1007/978-3-658-07159-2
- Musculus , M. and Kattke , K. Entrainment Waves in Diesel Jets SAE Int. J. Engines 2 1 1170 1193 2009 10.4271/2009-01-1355
- Livengood , J.C. and Wu , P.C. Correlation of Autoignition Phenomena in Internal Combustion Engines and Rapid Compression Machines Symp. Int. Combust 5 347 356 1955
- Krishnan , S. , Srinivasan , K. , and Midkiff , K. Phenomenological Modeling of Low-Temperature Advanced Low Pilot-Ignited Natural Gas Combustion SAE Technical Paper 2007-01-0942 2007 10.4271/2007-01-0942
- Walther , H.-P. , Schlatter , S. , Wachtmeister , G. , and Boulouchos , K. Combustion Models for Lean-Burn Gas Engines with Pilot Injection MTZ worldwide 73 2012 10.1365/s38313-012-0144-3
- Krenn , M. , Pirker , G. , Redtenbacher , C. , and Wimmer , A. A New Approach for Combustion Modeling of Large Dual-Fuel Engines MTZ-Fachtagung Heavy-Duty-, On- und Off-Highway-Motoren 2015
- Taritas , I. , Kozarac , D. , Sjeric , M. , Sierra Aznar , M. et al. Development and Validation of a Quasi-Dimensional Dual Fuel (Diesel-Natural Gas) Combustion Model SAE Int. J. Engines 10 2 483 500 2017 10.4271/2017-01-0517
- Hiroyasu , H. , Kadota , T. , and Arai , M. Development and Use of a Spray Combustion Modeling to Predict Diesel Engine Efficiency and Pollutant Emissions Bulletin of the JSME 26 1983
- Halstead , M.P. , Kirsch , L.J. , and Quinn , C.P. The Autoignition of Hydrocarbon Fuels at High Temperatures and Pressures-Fitting of a Mathematical Model Combustion and Flame 30 45 60 1977 10.1016/0010-2180(77)90050-5
- Pickett , L. , Manin , J. , Genzale , C. , Siebers , D. et al. Relationship between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction SAE Int. J. Engines 4 1 764 799 2011 10.4271/2011-01-0686
- Pickett , L. , Manin , J. , Payri , R. , Bardi , M. et al. Transient Rate of Injection Effects on Spray Development SAE Technical Paper 2013-24-0001 2013 10.4271/2013-24-0001
- Mancaruso , E. , Marialto , R. , Sequino , L. , and Vaglieco , B. Comparison of Spray Characteristics Measured in an Optical Single Cylinder Diesel Engine with 1D Model SAE Technical Paper 2014-01-1424 2014 10.4271/2014-01-1424
- Malbec , L. , Eagle , W. , Musculus , M. , and Schihl , P. Influence of Injection Duration and Ambient Temperature on the Ignition Delay in a 2.34L Optical Diesel Engine SAE Int. J. Engines 9 1 47 70 2016 10.4271/2015-01-1830
- Du , C. , Andersson , M. , and Andersson , S. Effects of Nozzle Geometry on the Characteristics of an Evaporating Diesel Spray SAE Int. J. Fuels Lubr. 9 3 493 513 2016 10.4271/2016-01-2197
- Weigand , P. and Bikas , G. Vorhersage der Gemischaufbereitung im Dieselmotor MTZ Motortech Z 79 80 2018 10.1007/s35146-018-0054-2
- Skeen , S. , Manin , J. , and Pickett , L. Visualization of Ignition Processes in High-Pressure Sprays with Multiple Injections of N-Dodecane SAE Int. J. Engines 8 2 696 715 2015 10.4271/2015-01-0799
- Knox , B.W. and Genzale , C.L. Reduced-Order Numerical Model for Transient Reacting Diesel Sprays with Detailed Kinetics International Journal of Engine Research 17 3 261 279 2016 10.1177/1468087415570765
- Knox , B. , Genzale , C. , Pickett , L. , Garcia-Oliver , J. et al. Combustion Recession after End of Injection in Diesel Sprays SAE Int. J. Engines 8 2 679 695 2015 10.4271/2015-01-0797
- Knox , B. and Genzale , C. Effects of End-of-Injection Transients on Combustion Recession in Diesel Sprays SAE Int. J. Engines 9 2 932 949 2016 10.4271/2016-01-0745
- Ma , G. , Tauzia , X. , and Maiboom , A. One-Dimensional Combustion Model with Detailed Chemistry for Transient Diesel Sprays Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 228 4 457 476 2014 10.1177/0954407013518036
- Tauzia , X. , Maiboom , A. , and Ma , G. A 1D Model for Diesel Sprays under Reacting Conditions SAE Technical Paper 2015-24-2395 2015 10.4271/2015-24-2395
- Aljure , A. , Tauzia , X. , and Maiboom , A. Comparison of Eulerian and Lagrangian 1D Models of Diesel Fuel Injection and Combustion SAE Technical Paper 2017-24-0006 2017 10.4271/2017-24-0006
- Aljure , A. , Tauzia , X. , and Maiboom , A. Heat Release Rate Modeling Improvement in an Eulerian 1D Diesel Combustion Model SAE Technical Paper 2018-01-1127 2018 10.4271/2018-01-1127
- Barro , C. , Nani , C. , Hutter , R. , and Boulouchos , K. Spray Model Based Phenomenological Combustion Description and Experimental Validation for a Dual Fuel Engine SAE Technical Paper 2017-24-0098 2017 10.4271/2017-24-0098
- Pan , J. , Zhao , P. , Law , C.K. , and Wei , H. A Predictive Livengood-Wu Correlation for Two-Stage Ignition International Journal of Engine Research 17 8 825 835 2016 10.1177/1468087415619516
- Fandakov , A. , Grill , M. , Bargende , M. , and Kulzer , A. Two-Stage Ignition Occurrence in the End Gas and Modeling Its Influence on Engine Knock SAE Int. J. Engines 10 4 2017 10.4271/2017-24-0001
- Yates , A. and Viljoen , C. An Improved Empirical Model for Describing Auto-Ignition SAE Technical Paper 2008-01-1629 2008 10.4271/2008-01-1629
- Kozarac , D. , Tomic , R. , Taritas , I. , Chen , J. et al. A Model for Prediction of Knock in the Cycle Simulation by Detail Characterization of Fuel and Temperature Stratification SAE Int. J. Engines 8 4 1520 1534 2015 10.4271/2015-01-1245
- Krisman , A. , Hawkes , E. , Talei , M. , Bhagatwala , A. , and Chen , J. A Direct Numerical Simulation of Cool-Flame Affected Autoignition in Diesel Engine-Relevant Conditions Proceedings of the Combustion Institute 2016 10.1016/j.proci.2016.08.043
- Krisman , A. , Hawkes , E. , and Chen , J. A Parametric Study of Ignition Dynamics at ECN Spray a Thermochemical Conditions Using 2D DNS Proceedings of the Combustion Institute. 2018 10.1016/j.proci.2018.08.026
- Dahms , R.N. , Paczko , G.A. , Skeen , S.A. , and Pickett , L.M. Understanding the Ignition Mechanism of High-Pressure Spray Flames Proceedings of the Combustion Institute 36 2 2017 2615 2623 1540-7489 10.1016/j.proci.2016.08.023
- Schlatter , S. 2015
- Siebers , D. Scaling Liquid-Phase Fuel Penetration in Diesel Sprays Based on Mixing-Limited Vaporization SAE Technical Paper 1999-01-0528 1999 10.4271/1999-01-0528
- 2013 978-3-642-19981-3
- Mehl , M. , Pitz , W.J. , Westbrook , C.K. , and Curran , H.J. Kinetic Modeling of Gasoline Surrogate Components and Mixtures under Engine Conditions Proceedings of the Combustion Institute 33 193 200 2011 10.1016/j.proci.2010.05.027
- Goodwin , D.G. , Speth , R.L. , Moffat , H.K. , and Weber , B.W. Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes https://www.cantera.org 2018 10.5281/zenodo.170284
- DelVescovo , D. , Kokjohn , S. , and Reitz , R. The Development of an Ignition Delay Correlation for PRF Fuel Blends from PRF0 (n-Heptane) to PRF100 (Iso-Octane) SAE Int. J. Engines 9 1 520 535 2016 10.4271/2016-01-0551 SAE Int. J. Engines 10.4271/2016-01-0551.01
- Versteeg , H.K. and Malalasekera , W. An Introduction to Computational Fluid Dynamics (the Finite Volume Method) Prince Hall 2007
- Malin , M. , Kiesling , C. , Redtenbacher , C. , and Wimmer , A. 2016 491 514 10.1007/978-3-658-15327-4{_}24