This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
A Computationally Efficient Progress Variable Approach for In-Cylinder Combustion and Emissions Simulations
Technical Paper
2019-24-0011
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
The use of complex reaction schemes is accompanied by high computational cost in 3D CFD simulations but is particularly important to predict pollutant emissions in internal combustion engine simulations. One solution to tackle this problem is to solve the chemistry prior the CFD run and store the chemistry information in look-up tables. The approach presented combines pre-tabulated progress variable-based source terms for auto-ignition as well as soot and NOx source terms for emission predictions. The method is coupled to the 3D CFD code CONVERGE v2.4 via user-coding and tested over various speed and load passenger-car Diesel engine conditions. This work includes the comparison between the combustion progress variable (CPV) model and the online chemistry solver in CONVERGE 2.4. Both models are compared by means of combustion and emission parameters. A detailed n-decane/α-methyl-naphthalene mechanism, comprising 189 species, is used for both online and tabulated chemistry simulations. The two chemistry solvers show very good agreement between each other and equally predict trends derived experimentally by means of engine performance parameters as well as soot and NOx engine-out emissions. The CPV model shows a factor 8 speed-up in run-time compared to the online chemistry solver without compromising the accuracy of the solution.
Recommended Content
Technical Paper | Development of a 3.0 L DI Diesel Engine to Meet Euro III Emission Norms |
Journal Article | Cold Start on Diesel Engine: Is Low Compression Ratio Compatible with Cold Start Requirements? |
Authors
Topic
Citation
Matrisciano, A., Netzer, C., Werner, A., Borg, A. et al., "A Computationally Efficient Progress Variable Approach for In-Cylinder Combustion and Emissions Simulations," SAE Technical Paper 2019-24-0011, 2019, https://doi.org/10.4271/2019-24-0011.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 |
Also In
References
- United Nations United Nations Framework Convention on Climate Change New York City UNFCCC 1992
- Pasternak , M. , Mauss , F. , Matrisciano , A. , Seidel , L. et al. Simulation of Diesel Surrogate Fuels Performance under Engine Conditions Using 0D Engine - Fuel Test Bench Proceedings of COMODIA 2012
- Lu , T. and Law , C. K. Toward Accommodating Realistic Fuel Chemistry in Large-Scale Computations Prog Energ Combust 35 192 215 2009
- Ahmed , S. S. , Mauss , F. , Moreac , G. , and Zeuch , T. A Comprehensive and Compact N-Heptane Oxidation Model Derived Using Chemical Lumping Phys Chem Chem Phys 9 9 1107 1126 2007
- Zeuch , T. , Moréac , G. , Ahmed , S. S. , and Mauss , F. A Comprehensive Skeletal Mechanism for the Oxidation of N-Heptane Generated by Chemistry-Guided Reduction Combust Flame 155 4 651 674 2008
- Seidel , L. , Netzer , C. , Hilbig , M. , Mauss , F. et al. Systematic Reduction of Detailed Chemical Reaction Mechanisms for Engine Applications J Eng Gas Turb Power 139 091701 091709 2017
- Lehtiniemi , H. , Mauss , F. , Balthasar , M. , and Magnusson , I. Modeling Diesel Spray Ignition Using Detailed Chemistry with a Progress Variable Approach Combust Sci Technol 178 10-11 1977 1997 2006
- Lehtiniemi , H. , Zhang , Y. , Rawat , R. , and Mauss , F. Efficient 3-D CFD Combustion Modeling with Transient Flamelet Models SAE Technical Paper 2008-01-0957 2008 10.4271/2008-01-0957
- Bo , T. , Mauss , F. , and Beck , L. Detailed Chemistry CFD Engine Combustion Solution with Ignition Progress Variable Library Approach SAE Technical Paper 2009-01-1898 2009 10.4271/2009-01-1898
- Bekdemir , C. , Somers , L. , and de Goey , L. Modeling Diesel Engine Combustion Using Pressure Dependent Flamelet Generated Manifolds P Combust Inst 33 22 2887 2894 2011
- Fiorina , B. , Gicquel , O. , Vervisch , L. , Carpentier , S. , and Darabiha , N. Premixed Turbulent Combustion Modeling Using Tabulated Detailed Chemistry and PDF P Combust Inst 30 1 867 874 2005
- van Oijen , J. A. , Lammers , F. A. , and de Goey , L. P. H. Modeling of Complex Premixed Burner Systems by Using Flamelet-Generated Manifolds Combust Flame 127 3 2124 2134 2001
- Gicquel , O. , Darabiha , N. , and Thévenin , D. Laminar Premixed Hydrogen/Air Counterflow Flame Simulations Using Flame Prolongation of ILDM with Differential Diffusion P Combust Inst 28 2 1901 1908 2000
- Peters , N. Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion Prog Energy Combust Sci 10 3 319 339 1984
- Pierce , C. and Moin , P. Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion J Fluid Mech 504 73 97 2004
- Franzelli , B. , Fiorina , B. , and Darabiha , N. A Tabulated Chemistry Method for Spray Combustion P Combust Inst 34 1659 1666 2013
- Karlsson , A. , Magnusson , I. , Balthasar , M. , and Mauss , F. Simulation of Soot Formation under Diesel Engine Conditions Using a Detailed Kinetic Soot Model SAE Technical Paper 981022 1998 10.4271/981022
- Nakov , G. , Mauss , F. , Wenzel , P. , and Krüger , C. Application of a Stationary Flamelet Library Based CFD Soot Model for Low-NOx Diesel Combustion Proceedings of THIESEL Conference on Thermo- and Fluid Dynamic Processes in Diesel Engines Valencia, Spain 2010
- Nakov , G. , Mauss , F. , Wenzel , P. , Steiner , R. et al. Soot Simulation under Diesel Engine Conditions Using a Flamelet Approach SAE Technical Paper 2009-01-2679 2010 10.4271/2009-01-2679
- Maigaard , P. , Mauss , F. , and Kraft , M. Homogenous Charge Compression Ignition Engine: A Simulation Study on the Effect of In-Homogeneities ASME J Eng Gas Turb Power 125 2 466 471 2003
- Gogan , A. , Sundén , B. , Lehtiniemi , H. , and Mauss , F. Stochastic Model for the Investigation of the Influence of Turbulent Mixing on Engine Knock SAE Technical Paper 2004-01-2999 2004 10.4271/2004-01-2999
- Aubagnac-Karkar , D. , Michel , J. B. , Colin , O. , Vervisch-Kljakic , P. E. , and Darabiha , N. Sectional Soot Model Coupled to Tabulated Chemistry for Diesel RANS Simulations Combust Flame 162 8 3081 3099 2015
- Matrisciano , A. , Borg , A. , Perlman , C. , Lehtiniemi , H. et al. Soot Source Term Tabulation Strategy for Diesel Engine Simulations with SRM SAE Technical Paper 2015-24-2400 2015 10.4271/2015-24-2400
- Matrisciano , A. , Franken , T. , Perlman , C. , Borg , A. et al. Development of a Computationally Efficient Progress Variable Approach for a Direct Injection Stochastic Reactor Model SAE Technical Paper 2017-01-0512 2017 10.4271/2017-01-0512
- Pires da Cruz , A. Three-Dimensional Modeling of Self-Ignition in HCCI and Conventional Diesel Engines Combust Sci Technol 176 5-6 867 887 2004
- Colin , O. , Pires da Cruz , A. , and Jay , S. Detailed Chemistry-Based Auto-Ignition Model Including Low Temperature Phenomena Applied to 3-D Engine Calculations P Comb Inst 30 2 2649 2656 2005
- Truffin , K. and Colin , O. Auto-Ignition Model Based on Tabulated Detailed Kinetics and Presumed Temperature PDF - Application to Internal Combustion Engine Controlled by Thermal Stratifications Int J Heat Mass Tran 54 23-24 4885 4894 2011
- Richards , K. J. , Senecal , P. K. , and Pomraning , E. CONVERGE (v2.4) Madison, WI Convergent Science, Inc 2018
- Ihme , M. , Shunn , L. , and Zhang , J. Regularization of Reaction Progress Variable for Application to Flamelet-Based Combustion Models J Comput Phys 231 7715 7721 2012
- Bekdemir , C. , Somers , L. M. T. , De Goey , L. P. H. , Tillou , J. , and Angelberger , C. Predicting Diesel Combustion Characteristics with Large-Eddy Simulations Including Tabulated Chemical Kinetics P Combust Inst 34 2 3067 3074 2013
- Wenzel , P. , Steiner , R. , Krüger , C. , Schießl , R. et al. 3D-CFD Simulation of DI-Diesel Combustion Applying a Progress Variable Approach Accounting for Detailed Chemistry SAE Technical Paper 2007-01-4137 2007 10.4271/2007-01-4137
- Amneus , P. , Montorsi , L. , Mauss , F. Progress Variable for Homogeneous Charge Compression Ignition (HCCI) Engine Combustion i Joint Meeting of the Scandinavian-Nordic and Italian Sections of the Combustion Institute Naples, Italy 2003
- Loge A. B. http://logesoft.com/loge-software/ 2018
- Wang , X. 2017
- Matrisciano , A. , Pasternak , M. , Wang , X. , Antoshkiv , O. et al. On the Performance of Biodiesel Blends - Experimental Data and Simulations Using a Stochastic Fuel Test Bench SAE Technical Paper 2014-01-1115 2014 10.4271/2014-01-1115
- Mauss , F. 1998
- Mauss , F. , Netzell , K. , and Lehtiniemi , H. Aspects of Modeling Soot Formation in Turbulent Diffusion Flames Combust Sci and Tech 178 1871 1885 2006
- Pasternak , M. , Mauss , F. , Perlman , C. , and Lehtiniemi , H. Aspects of 0D and 3D Modeling of Soot Formation for Diesel Engines Combust Sci and Tech 186 10-11 1517 1535 2014
- Frenklach , M. and Wang , H. Detailed Modeling of Soot Particle Nucleation and Growth P Combust Inst 23 1559 1566 1991
- Schuetz , C. A. and Frenklach , M. Nucleation of Soot: Molecular Dynamics Simulations of Pyrene Dimerization P Combust Inst 29 2307 2314 2002
- Balthasar , M. , Mauss , F. , Knobel , A. , and Kraft , M. 2000
- Kazakov , A. and Frenklach , M. Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation with the Method of Moments and Application to High-Pressure Laminar Premixed Flames Combust Flame 114 481 501 1998
- Wang , H. Formation of Nascent Soot and Other Condensed-Phase Materials in Flames P Combust Inst 33 41 67 2011
- Zel'dovich , Y. The Oxidation of Nitrogen in Combustion Explosions Acta Physicochimica U.S.S.R 21 577 628 1946
- Zeldovich , Y. A. , Frank-Kamenetskii , D. , and Sadovnikov , P. Oxidation of Nitrogen in Combustion Publishing House of the Acad of Sciences of USSR 1947
- Ravet , F. , Dutfoy , L. , Rathinam , B. , Lehtiniemi , H. , Seidel , L. , Netzer , C. , Mauss , F. Soot Modeling with Particle Sectional Model (PSM) in Diesel Engine. Results and Discussion Proceedings of THIESEL 2016: Conference on Thermo-And Fluid Dynamic Processes in Direct Injection Engines 2016
- Reitz , R. D. and Bracco , F. V. Mechanisms of Breakup of Round Liquid Jets Encyclopedia of Fluid Mechanics Gulf Publishing Company 1986
- Senecal , P. K. , Richards , K. J. , Pomraning , E. , Yang , T. et al. A New Parallel Cut-Cell Cartesian CFD Code for Rapid Grid Generation Applied to In-Cylinder Diesel Engine Simulations SAE Technical Paper 2007-01-0159 2007 10.4271/2007-01-0159
- Senecal , P. K. , Pomraning , E. , and Richards , K. J. Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length Using CFD and Parallel Detailed Chemistry SAE Technical Paper 2003-01-1043 2003 10.4271/2003-01-1043
- Babajimopoulos , A. , Assanis , D. N. , Flowers , D. L. , Aceves , S. M. , and Hessel , R. P. A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model with Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines Int J Engine Res 6 5 497 512 2005