This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Analysis of Force Mitigation by Boots in Axial Impacts using a Lower Leg Finite Element Model
Technical Paper
2019-22-0011
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Lower extremity injuries caused by floor plate impacts through the axis of the lower leg are a major source of injury and disability for civilian and military vehicle occupants. A collection of PMHS pendulum impacts was revisited to obtain data for paired booted/unbooted test on the same leg. Five sets of paired pendulum impacts (10 experiments in total) were found using four lower legs from two PMHS. The PMHS size and age was representative of an average young adult male. In these tests, a PMHS leg was impacted by a 3.4 or 5.8 kg pendulum with an initial velocity of 5, 7, or 10 m/s (42-288 J). A matching LS-DYNA finite element model was developed to replicate the experiments and provide additional energy, strain, and stress data. Simulation results matched the PMHS data using peak values and CORA curve correlations. Experimental forces ranged between 1.9 and 12.1 kN experimentally and 2.0 and 11.7 kN in simulation. Combat boot usage reduced the peak force by 36% experimentally (32% in simulation) by compressing the sole and insole with similar mitigations for calcaneus strain. The simulated Von Mises stress contours showed the boot both mitigating and shifting stress concentrations from the calcaneus in unbooted impacts to the talus-tibia joint in the booted impacts, which may explain why some previous studies have observed shifts to tibia injuries with boot or padding usage.
Authors
- Carolyn E. Hampton - U.S. Army Research Laboratory, CCDC-WMRD, Aberdeen Proving G
- Michael Kleinberger - U.S. Army Research Laboratory, CCDC-WMRD, Aberdeen Proving G
- Michael Schlick - Dept. of Neurosurgery, Medical College of Wisconsin at Zablo
- Narayan Yoganandan - Dept. of Neurosurgery, Medical College of Wisconsin at Zablo
- Frank A. Pintar - Dept. of Neurosurgery, Medical College of Wisconsin at Zablo
Topic
Citation
Hampton, C., Kleinberger, M., Schlick, M., Yoganandan, N. et al., "Analysis of Force Mitigation by Boots in Axial Impacts using a Lower Leg Finite Element Model," SAE Technical Paper 2019-22-0011, 2020, https://doi.org/10.4271/2019-22-0011.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 | ||
Unnamed Dataset 5 | ||
Unnamed Dataset 6 | ||
Unnamed Dataset 7 | ||
Unnamed Dataset 8 | ||
Unnamed Dataset 9 | ||
Unnamed Dataset 10 | ||
Unnamed Dataset 11 | ||
Unnamed Dataset 12 | ||
Unnamed Dataset 13 | ||
Unnamed Dataset 14 | ||
Unnamed Dataset 15 | ||
Unnamed Dataset 16 | ||
Unnamed Dataset 17 | ||
Unnamed Dataset 18 | ||
Unnamed Dataset 19 | ||
Unnamed Dataset 20 | ||
Unnamed Dataset 21 |
Also In
References
- Athavale , S.A. , Joshi , S.D. , Joshi , S.D. 2010 Internal architecture of the calcaneus: correlations with mechanics and pathoanatomy of calcaneal fractures Surgical and Radiologic Anatomy 32 115 122
- Baker , W.A. 2017 Development and validation of a finite element dummy lower limb model for under-body blast applications MS Thesis Virginia Polytechnic and State University, Blacksburg VA
- Belmont , P.J. , McCriskin , B.J. , Hsiao , M.S. , Burks , R. , Nelson , K.J. , Schoenfeld , A.J. 2013 The nature and incidence of musculoskeletal combat wounds in Iraq and Afghanistan (2005-2009) Journal of Orthopaedic Trauma 27 5 107 113
- Butz , K. , Spurlock , C. , Roy , R. , Bell , C. , Barrett , P. , Ward , A. , Xiao , X. , Shirley , A. , Welch , C. , Lister , K. 2017 Development of the CAVEMAN human body model: validation of lower extremity sub-injurious response to vertical accelerative loading Stapp Car Crash Journal 61 175 209
- Crandall J.R. , Kuppa , S.M. , Klopp , G.S. , Hall , G.W. , Pilkey , W.D. , Hurwitz , S.R. 1998 Injury mechanisms and criteria for the human foot and ankle under axial impacts to the foot International Journal of Crashworthiness 3 2 147 162
- Dong , L. , Zhu , F. , Jin , X. , Suresh , M. , Jiang , B. , Sevagan , G. , Cai , Y. , Li , G. , Yang , K.H. 2013 Blast effects on the lower extremities and its mitigation: a computational study Journal of Mechanical Behavior of Biomedical Materials 28 111 124
- Funk , J.R. , Crandall , J.R. , Tourret , L.J. , MacMahon , C.B. , Bass , C.R. , Khaewpong , N. , Eppinger , R.H. 2001 The effect of active muscle tension on the axial injury tolerance of human foot/ankle complex Proceedings of 17th Meeting on Enhanced Safety of Vehicles Amsterdam Netherlands
- Funk , J.R. , Rudd , R.W. , Kerrigan , J.R. , Crandall , J.R. 2007 The line of action in the tibia during axial compression of the leg Journal of Biomechanics 40 2277 2282
- Gallenberger , K. 2013 Foot and ankle injuries in variable energy impacts MS Thesis Marquette University, Milwaukee WI
- Gehre , C. , Gades , H. , Wernicke , P. 2009 Objective rating of signals using test and simulation response Proceedings of the 21st Enhanced Safety of Vehicles Conference Stuttgart Germany
- GNS 2012
- Grigoriadis , G. , Newell , N. , Carpanen , D. , Christou , A. , Bull , A.M.J. , Masouros , S.D. 2017 Material properties of the heel fat pad across strain rates Journal of the Mechanical Behavior of Biomedical Materials 65 398 407
- Hampton , C.E. , Chirvi , S. , Kleinberger , M. 2019 Infleunce of trabecular bone density on calcaneus fracture in axial impacts Biomedical Sciences Instrumentation 55 2 361 366
- Iwamoto , M. , Miki , K. , Tanaka , E. 2005 Ankle skeletal injury predictions using anisotropic inelastic constitutive model of cortical bone taking into account damage evolution Stapp Car Crash Journal 49 133 156
- Kim , Y. , Kim , H. , Lee , K. 2015 Analysis of heel pad thickness in Korean Journal of the Korean Foot and Ankle Society 19 4 188 192
- Kitagawa , Y. , Ichikawa , H. , Pal , C. , King , A.I. , Levine , R.S. 1998 Lower leg injuries caused by dynamic axial loading and muscle testing Proceedings of the 16th Enhanced Safety on Vehicles Windsor Canada
- Krayterman , D. 2015
- Loftis , K.L. and Gillich P.J. 2014 Trauma comparison of civilian and automotive with military combat injuries Association for the Advancement of Automotive Medicine Short Communications 256 259
- LSTC 2014 LS-DYNA Keyword User’s Manual Volume I-III Livermore Software Technology Corporation
- Lynch , M.L. , Wozniak , S.L. , Sokolow , A. 2015
- Masini , B.D. , Waterman , S.M. , Wenke , J.C. , Owens , B.D. , Hsu , J.R. , Ficke , J.R. 2009 Resource utilization and disability outcome of combat casualties from Opertation Iraqi Freedom and Operation Enduring Freedom Journal of Orthopaedic Trauma 23 4 261 266
- Masouros , S.D. , Newell , N. , Ramasamy , A. , Bonner , T.J. , West , A.T.H. , Hill , A.M. , Clasper , J.C. , Bull , A.M.J. 2013 Design of a traumatic injury simulator for assessing lower limb response to high loading rates Annals of Biomedical Engineering 41 9 1957 1967
- McKay , B.J. and Bir , C.A. 2009 Lower extremity injury criteria for evaluating military vehicle occupant injury in underbelly blast events Stapp Car Crash Journal 53 229 249
- McKay , B.J. 2010
- McMaster , J. , Parry , M. , Wallace , W.A. , Wheeler , L. , Owen , C. , Lowne , R. , Oakley , C. , Roberts , A.K. 2000 Biomechanics of ankle and hindfoot injuries in dynamic axial loading Stapp Car Crash Journal 44 357 377
- Muthukumaravel , N. , Ravichandran , D. , Melani-Rajendran , S. 2011 Human calcaneal facets for the talus: patterns and clinical implications Journal of Clinical and Diagnostic Research 5 4 791 794
- Perry , B.J. , Gabler , L. , Bailey , A. , Henderson , K. , Salzar , R.S. 2014
- Pintar , F.A. , Schlick , M.B. , Yoganandan , N. , Voo , L. , Merkle , A.C. , Kleinberger , M. 2016 Biomechanical response of military booted and unbooted foot-ankle-tibia from vertical loading Stapp Car Crash Journal 60 247 285
- Puso , M.A. and Weiss , J.A. 1998 Finite element implementation of anisotropic quasi-linear viscoelasticity usign a discrete spectrum approximation Journal of Biomechanical Engineering 120 1 62 70
- Roberts , D.P. 1993 Injury mechanisms and tolerance of the human ankle joint Calspan Research Center Buffalo NY
- Rudd , R.W. , Kitagawa , Y. , Crandall , J.R. , Poteau , F.C. 2004 Evaluation of energy-aborbing materials as a means to reduce foot/ankle axial loading injury risk Proceedings of the Institution of Mechanical Engineers 218 D 279 293
- Shin , J. , Yue , N. , Untaroiu , C.D. 2012 A finite element model of the foot and ankle for automotive impact applications Annals of Biomedical Engineering 40 12 2519 2531
- Untaroiu C. , Darvish , K. , Crandall , J. , Deng , B. , Wang , J. 2005 A finite element model of the lower limb for simulating pedestrian impacts Stapp Car Crash Journal 49 157 181
- Whyte , T. 2007 Investigation of factors affecting surrogate limb measurements in the testing of landmine protected vehicles MS Thesis University of Cape Town, Capetown South Africa
- Yang , K.H. , Hu , J. , King , A.I. , Chou , C. , Prasad , P. 2006 Development of numerical models for injury biomechanics research: a review of 50 years of publications in the Stapp Car Crash Conference Stapp Car Crash Journal 50 429 490
- Yoganandan , N. , Pintar , F.A. , Kumeresan , S. , Boynton , M. 1997 Axial impact biomechanics of the human foot-ankle complex Journal of Biomedical Engineering 119 433 437
- Yoganandan , N. , Chirvi , S. , Pintar , F.A. , Uppal , H. , Schlick , M. , Banerjee A. , Voo , L. , Merkle , A. , Kleinberger , M. 2016 Foot-ankle fractures and injury probability curves from post-mortem human surrogate tests Annals of Biomedical Engineering 44 10 2937 2947
- Zhang , K. , Cao , L. , Fanta , A. , Reed , M.P. , Neal , M. , Wang , J. , Lin , C. , Hu , J. 2017 An automated method to morph finite element whole-body human models with a wide range of stature and body shape for both men and women Journal of Biomechanics 60 253 260