This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Axle Torque Distribution to Improve Vehicle Handling and Stability
Technical Paper
2019-01-5037
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
The majority of the fully electric vehicles currently on the market have a basic drivetrain configuration, consisting of multiple electric motors, which promise considerable performance enhancements in terms of vehicle behavior and active safety. A significant advantage was achieving measurable benefits in terms of vehicle cornering response through controlling the individual drivetrains. This paper presents an axle torque distribution method to improve a 4WD vehicle steering performance. The method can automatically adjust the output drive torque of the front and rear motors of the vehicle to change the vehicle yaw rate before ESP intervention, and at the same time remain the driver torque demand unchanged. In this paper we present a feedback yaw rate controller. When the estimated yaw rate differs from the actual yaw rate with a pre-defined small threshold, a yaw rate control is active, the purpose of the controller is to reduce the vehicle understeer characteristic. The simulation and experimental test results shows that this proposed method can reduce the vehicle understeer characteristic and improve the vehicle handling and stability performance.
Authors
Topic
Citation
Wu, A., Li, C., Zhao, Y., and Cui, J., "Axle Torque Distribution to Improve Vehicle Handling and Stability," SAE Technical Paper 2019-01-5037, 2019, https://doi.org/10.4271/2019-01-5037.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 |
Also In
References
- Murata , S. Innovation by In-Wheel Motor Drive Unit Veh Syst Dyn 50 6 807 830 2012
- Geng , C. , Mostefai , L. , Denai , M. , and Hori , Y. Direct Yaw-Moment Control of an In-Wheel Motored Electric Vehicle Based on Body Slip Angle Fuzzy Observer IEEE Trans Indust Electron 56 5 1411 1419 2009
- van Zanten , A. Bosch ESP Systems: 5 Years of Experience SAE Technical Paper 2000-01-1633 2000 10.4271/2000-01-1633 Annamalai , R. , Marathe , M. , Karle , U. , Venkatesan , K. et al. Development of Vehicle Yaw Stability Controller SAE Technical Paper 2013-26-0086 2013 10.4271/2013-01-0086
- Li , L. and Zhan , W. Study on Torque Vectoring Differential for Vehicle Stability Control via Hardware-in-Loop Simulation IEEE International Conference on Communication Software & Networks 2011
- Honda , T. Development of Handling Performance Control for SPORT HYBRID SH-AWD SAE Technical Paper 2015-01-1575 2015 10.4271/2015-01-1575
- Wheals , J. , Baker , H. , Ramsey , K. , and Turner , W. Torque Vectoring AWD Driveline: Design, Simulation, Capabilities and Control SAE Technical Paper 2004-01-0863 2004 10.4271/2004-01-0863
- Sawase , K. and Inoue , K. Classification and Analysis of Lateral Torque-Vectoring Differentials Using Velocity Diagrams Proc. IMechE D 222 1527 1541 2008 10.1243/09544070JAUTO824
- Zheng , S. , Tang , H. , Han , Z. , and Zhang , Y. Controller Design for Vehicle Stability Enhancement Control Eng. Pract. 14 12 1413 1421 2006
- Park , K. , Heo , S. , and Baek , I. Controller Design for Improving Lateral Vehicle Dynamic Stability JSAE Rev. 22 4 481 486 2001
- Gutiérrez , J. , Romo , J. , González , M.I. , Cañibano , E. , and Merino , J.C. 2011 257 262