This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
SI Combustion Characteristics of Cyclopentane - Detailed Kinetic Mechanism
Technical Paper
2019-01-2305
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
Cyclopentane (C5H10) has been reported to exhibit large octane sensitivity (RON − MON) = 17. During the course of research for sustainable liquid fuels, fundamental SI combustion characteristics of cyclopentane have been investigated using the kinetic mechanism which has been newly developed based on the quantum chemical calculations for essential chemical species and reactions. It was found that the intramolecular isomerization reaction via six-membered ring transition states are significantly hindered by the cyclic carbon skeleton. As a result, the predicted ignition delay times at low temperature are longer than those for the acyclic hydrocarbons. The effect on the laminar flame propagation speed was found to be small.
Recommended Content
Authors
Citation
Miyoshi, A., "SI Combustion Characteristics of Cyclopentane - Detailed Kinetic Mechanism," SAE Technical Paper 2019-01-2305, 2019, https://doi.org/10.4271/2019-01-2305.Also In
References
- Leppard, W.R. The chemical origin of fuel octane sensitivity SAE Paper# 902137 1990
- Kalghatgi, G.T. Fuel anti-knock quality - part I, engine studies SAE Paper# 2001-01-3584 2001
- Kalghatgi, G.T. Fuel anti-knock quality - part II, vehicle studies - how relevant is motor octane number (MON) in modern engines? SAE Paper# 2001-01-3585 2001
- Westbrook, C.K. , Mehl, M. , Pitz, W.J. and Sjöberg M. Combust Flame 175 2 15 2017
- Singh, E. , Badra, J. , Mehl, M. , and Sarathy, S.M. Chemical kinetic insights into the octane number and octane sensitivity of gasoline surrogate mixtures Energy Fuel 31 1945 1960 2017
- Sarathy, S.M. , Kukkadapu, G. , Mehl, M. , Javed, T. , Ahmed, A. , Naser, N. , Takawade, A. , Kosiba, G. , AlAbbad, M. , Singh, E. , Oehlschlaeger, M.A. , Sung C.-J. and Farooq, A. Compositional effects on the ignition of FACE gasolines Combust. Flame 169 171 193 2016
- Miyoshi, A. Chemical kinetic analysis on the effect of the occurrence of cool flame on SI knock Int. J. Automotive Engineering 8 130 136 2017
- Dahmen, M. and Marquardt W. Energy Fuel 31 4096 4121 2017
- Chemkin Pro 19.1 ANSYS San Diego 2018
- Kee, R.J. , Rupley, F.M. and Miller, J.A. Chemkin-II: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical kinetics 1995
- Miyoshi, A. http://akrmys.com/KUCRS/ 2018
- Frisch, M.J. , et al. Revision E.01, Gaussian, Inc. Wallingford CT 2013 Frisch, M.J. Gaussian 16, Revision B.01 Gaussian, Inc. Wallingford CT 2016
- Miyoshi, A. http://akrmys.com/gpop/
- Katzer, G. and Sax, A.F. Numerical determination of pseudorotation constants J. Chem. Phys 117 8219 8228 2002 Sax, A.F. On pseudorotation Chem. Phys 349 9 31 2008
- Zhao, H. , Wang, J. , Cai, X. , Tian, Z. , Li, Q. and Huang, Z. A comparison study of cyclopentane and cyclohexane laminar flame speeds at elevated pressures and temperatures Fuel 234 238 246 2018
- M. J. Al Rashidi , M. Mehl , W.J. Pitz , S. Mohamed , S.M. Sarathy Cyclopentane combustion chemistry, Part I: Mechanism development and computational kinetics, Combust Flame 183 358 371 2017
- M.J. Al Rashidi , J.C. Mármol , C. Banyon , M.B. Sajid , M. Mehl , W.J. Pitz , S. Mohamed , A. Alfazazi , T. Lu , H.J. Curran , A. Farooq , S.M. Sarathy Cyclopentane combustion. Part II. Ignition delay measurements and mechanism validation, Combust Flame 183 372 385 2017