Injection Strategies for Isobaric Combustion

2019-01-2267

12/19/2019

Features
Event
2019 JSAE/SAE Powertrains, Fuels and Lubricants
Authors Abstract
Content
In a previous study, we demonstrated that the isobaric combustion cycle, achieved with a split injection strategy, can be more suitable for the double compression expansion engine concept than the conventional diesel combustion cycle. The present work is focused on understanding the effect of different injection strategies on the heat release, efficiency, and emissions of isobaric combustion at the peak cylinder pressure of 150 bar. In situ injection rate measurements are performed to improve our understanding of the heat release rate shape and pollutant formation. A variation of load is performed to demonstrate the feasibility of the isobaric combustion cycle at higher loads, and the means of achieving them. The thermal efficiency reduces at lower loads because of heat losses. It peaks at a medium load point before reducing again at higher loads because of exhaust losses. The effect of altering the injection strategy on the isobaric combustion cycle is also studied at a constant equivalence ratio. The alteration of injection strategy is proven to have minimal effect on efficiency, loss mechanisms, and emissions when more than one injection is used.
Meta TagsDetails
DOI
https://doi.org/10.4271/2019-01-2267
Pages
13
Citation
Babayev, R., Houidi, M., Shankar, V., Aljohani, B. et al., "Injection Strategies for Isobaric Combustion," SAE Technical Paper 2019-01-2267, 2019, https://doi.org/10.4271/2019-01-2267.
Additional Details
Publisher
Published
Dec 19, 2019
Product Code
2019-01-2267
Content Type
Technical Paper
Language
English