This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Thermal Modeling and Sensitivity Analysis of a Traction Motor in a Production EV
Technical Paper
2019-01-0901
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Thermal design is critical to the performance and reliability of electric vehicle’s traction motor which may suffer from issues such as de-magnetization of permanent magnets and aging of insulation layer of copper winding wires at high temperature. In this work, CFD simulation was first conducted using ANSYS FLUENT to study the heat transfer and fluid flow inside the stator-rotor air gap and the end space of an electric traction motor used in a production vehicle (GAC’s pure electric GE3 SUV). To study the effect of air gap thickness, analytical results based on thermo-fluid theory were also computed and compared to CFD results. We then conducted lumped-parameter thermal network (LPTN) simulation of the traction motor. The model consists of 74 nodes, in which each stator end winding was modeled as three-layer structure to capture the inner temperature gradient. A sensitivity analysis was also performed over a range of parameters, e.g., material thermal conductivity, thermal contact resistance at interfaces, stator-rotor air gap thickness, convective heat transfer coefficient at the two end spaces. This systematic work is highly valuable to understand the motor’s critical thermal design parameters and to further improve the motor thermal, mechanical and electro-magnetic management design.
Recommended Content
Authors
- Xiaohui Li - GAC R&D Center Silicon Valley Inc.
- Jin Shang - GAC R&D Center Silicon Valley Inc.
- Bozhi Yang - GAC R&D Center Silicon Valley Inc.
- Linpei Zhu - Guangzhou Automotive Engineering Institute
- Xiong Liu - Guangzhou Automotive Engineering Institute
- Fei Xiong - Guangzhou Automotive Engineering Institute
Topic
Citation
Li, X., Zhu, L., Liu, X., Xiong, F. et al., "Thermal Modeling and Sensitivity Analysis of a Traction Motor in a Production EV," SAE Technical Paper 2019-01-0901, 2019, https://doi.org/10.4271/2019-01-0901.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 | ||
Unnamed Dataset 5 | ||
Unnamed Dataset 6 | ||
Unnamed Dataset 7 |
Also In
References
- About GAC GE3 SUV https://insideevs.com/gac-motor-launches-pure-electric-ge3-suv https://electrek.co/2017/07/24/china-new-all-electric-suv-gac-motor-ge3/
- ANSYS® Maxwell http://www.ansys.com/products/electronics/ansys-maxwell
- Cousineau , J.E. , Bennion , K. , DeVoto , D. , Mihalic , M. , and Narumanchi , S. 2015
- Bennion , K. and Cousineau , J. Sensitivity Analysis of Traction Drive Motor Cooling Proceedings of the 2012 IEEE Transportation Electrification Conference and Expo (ITEC) Dearborn, MI June 18-20, 2012
- Incropera , F.P. and DeWitt , D.P. Introduction to Heat Transfer Sixth Wiley 2011
- Staton , D.A. and Cavagnino , A. Convection Heat Transfer and Flow Calculations Suitable for Electric Machines Thermal Models IEEE Transactions on Industrial Electronics 55 10 3509 3516 2008
- Romanazzi , P. and Howey , D.A. Air-Gap Convection in a Switched Reluctance Machine 2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER) Monte-Carlo, Monaco March 31-April 2, 2015
- Becker , K. and Kaye , J. The Influence of a Radial Temperature Gradient on the Instability of a Fluid Flow in an Annulus with an Inner Rotating Cylinder Trans. of the ASME 84 2 106 110 1962
- Camilleri , R. , Howey , D.A. , and McCulloch , M.D. Experimental Investigation of the Thermal Contact Resistance in Shrink Fit Assemblies with Relevance to Electrical Machines 7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014) Manchester, UK April 8-10, 2014
- Zeng , Y. and Jiang , X. Lumped Parameter Thermal Circuit Method Combined with Temperature Field and Flow Field Analyses for Temperature Predictions of Permanent Magnets in Motors Journal of Tsinghua University (Science and Technology) 58 1 67 74 2018