This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Vision-Based Techniques for Identifying Emergency Vehicles
Technical Paper
2019-01-0889
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
This paper discusses different computer vision techniques investigated by the authors for identifying Emergency Vehicles (EV). Two independent EV identification frameworks were investigated: (1) A one-stage framework where an object detection algorithm is trained on a custom dataset to detect EVs, (2) A two-stage framework where an object classification algorithm is implemented in series with an object detection pipeline to classify vehicles into EVs and non-EVs. A comparative study is conducted for different multi-spectral feature vectors of the image, against several classification models implemented in framework 2. Additionally, a user-defined feature vector is defined and its performance is compared against the other feature vectors. Classification outputs from each of the frameworks are compared to the ground truth, and results are quantitatively listed to conclude upon the ideal decision rule. As maintaining the speed of data output is the priority throughout our development, a computationally inexpensive object tracking algorithm is selected to accurately track EV between image frames. This vision-based EV detection scheme fused with data from other sensors on our autonomous vehicle shall be used to establish a sensor-fusion based EV detection and response framework in future work.
Recommended Content
Technical Paper | Autonomous Vehicles in the Cyberspace: Accelerating Testing via Computer Simulation |
Technical Paper | Navigation Systems for Passenger Cars |
Authors
Topic
Citation
Nayak, A., Gopalswamy, S., and Rathinam, S., "Vision-Based Techniques for Identifying Emergency Vehicles," SAE Technical Paper 2019-01-0889, 2019, https://doi.org/10.4271/2019-01-0889.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 |
Also In
References
- Lv , C. , Cao , D. , Zhao , Y. , Auger , D.J. et al. Analysis of Autopilot Disengagements Occurring During Autonomous Vehicle Testing IEEE/CAA Journal of Automatica Sinica 5 1 58 68 2018
- Fazenda , B. , Atmoko , H. , Gu , F. , Guan , L. et al. Acoustic Based Safety Emergency Vehicle Detection for Intelligent Transport Systems ICCAS-SICE, 2009 2009 4250 4255
- Meucci , F. , Pierucci , L. , Del Re , E. , Lastrucci , L. et al. A Real-Time Siren Detector to Improve Safety of Guide in Traffic Environment Signal Processing Conference, 2008 16th European 2008 1 5
- Karpis , O. System for Vehicles Classification and Emergency Vehicles Detection IFAC Proceedings Volumes 45 7 186 190 2012
- Tian , Y. , Lo , W.-Y. , and Ferguson , D.I.F. 2016
- https://rip.trb.org/view/1500797
- Arabi , P. and Zaky , S. Integrated Vision and Sound Localization Proceedings of the Third International Conference on Information Fusion 2000 2
- Gopalswamy , S. and Rathinam , S. 2018
- Sun , Z. , Bebis , G. , and Miller , R. On-Road Vehicle Detection: A Review IEEE Transactions on Pattern Analysis and Machine Intelligence 28 5 694 711 2006
- Sivaraman , S. and Trivedi , M.M. Looking at Vehicles on the Road: A Survey of Vision-Based Vehicle Detection, Tracking, and Behavior Analysis IEEE Transactions on Intelligent Transportation Systems 14 4 1773 1795 2013
- Everingham , M. , Van Gool , L. , Williams , C.K.I. , Winn , J. et al. The Pascal Visual Object Classes (VOC) Challenge International Journal of Computer Vision 88 2 303 338 2010
- Lin , T.-Y. , Maire , M. , Belongie , S. , Hays , J. et al. Microsoft COCO: Common Objects in Context European Conference on Computer Vision 2014 740 755
- Deng , J. , Dong , W. , Socher , R. , Li , L.-J. et al. Imagenet: A Large-Scale Hierarchical Image Database Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on 2009 248 255 IEEE
- Geiger , A. , Lenz , P. , Stiller , C. , and Urtasun , R. Vision Meets Robotics: The KITTI Dataset International Journal of Robotics Research (IJRR) 2013
- Cordts , M. , Omran , M. , Ramos , S. , Rehfeld , T. et al. The Cityscapes Dataset for Semantic Urban Scene Understanding Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016 3213 3223
- Fisher , Y. , Xian , W. , Chen , Y. , Liu , F. 2018
- Krizhevsky , A. , Sutskever , I. , and Hinton , G.E. Imagenet Classification with Deep Convolutional Neural Networks Advances in Neural Information Processing Systems 2012 1097 1105
- Girshick , R. , Donahue , J. , Darrell , T. , and Malik , J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation Computer Vision and Pattern Recognition 2014
- Girshick , R. Fast R-CNN The IEEE International Conference on Computer Vision (ICCV) 2015
- Ren , S. , He , K. , Girshick , R. , and Sun , J. Faster r-cnn: Towards Real-Time Object Detection with Region Proposal Networks Cortes C. , Lawrence N.D. , Lee D.D. , Sugiyama M. , and Garnett R. Advances in Neural Information Processing Systems 28 Curran Associates, Inc 2015 91 99
- Dai , J. , Yi , L. , He , K. , and Sun , J. R-FCN: Object Detection Via Region-Based Fully Convolutional Networks Advances in Neural Information Processing Systems 379 387 2016
- Lin , T.-Y. , Dollár , P. , Girshick , R.B. , He , K. et al. Feature Pyramid Networks for Object Detection 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017 936 944
- He , K. , Gkioxari , G. , Dollar , P. , and Girshick , R. Mask R-CNN IEEE Transactions on Pattern Analysis and Machine Intelligence 1 1 2018
- Redmon , J. , Divvala , S. , Girshick , R. , and Farhadi , A. You Only Look Once: Unified, Real-Time Object Detection The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016
- Liu , W. , Anguelov , D. , Erhan , D. , Szegedy , C. et al. SSD: Single Shot Multibox Detector European Conference on Computer Vision 2016 21 37
- Redmon , J. and Farhadi , A. YOLO9000: Better, Faster, Stronger 2017
- Redmon , J. and Farhadi , A. 2018
- Yilmaz , A. , Javed , O. , and Shah , M. Object Tracking: A Survey ACM Computing Surveys (CSUR) 38 4 13 2006
- Huang , C. , Li , Y. , and Nevatia , R. Multiple Target Tracking by Learning-Based Hierarchical Association of Detection Responses IEEE Transactions on Pattern Analysis and Machine Intelligence 35 4 898 910 2013
- Milan , A. , Leal-Taixé , L. , Reid , I. , Roth , S. et al. 2016
- Bewley , A. , Ge , Z. , Ott , L. , Ramos , F. et al. Simple Online and Realtime Tracking 2016 IEEE International Conference on Image Processing (ICIP) 2016 3464 3468
- Redmon , J.
- Dalal , N. and Triggs , B. Histograms of Oriented Gradients for Human Detection Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on 1 2005 886 893
- Rybski , P.E. , Huber , D. , Morris , D.D. , and Hoffman , R. Visual Classification of Coarse Vehicle Orientation Using Histogram of Oriented Gradients Features Intelligent Vehicles Symposium (IV), 2010 IEEE 2010 921 928
- Chapelle , O. , Haffner , P. , and Vapnik , V.N. Support Vector Machines for Histogram-Based Image Classification IEEE Transactions on Neural Networks 10 5 1055 1064 1999
- Bradski , G. and Kaehler , A. 2000
- Pedregosa , F. , Varoquaux , G. , Gramfort , A. , Michel , V. et al. Scikit-Learn: Machine Learning in Python Journal of Machine Learning Research 12 Oct 2825 2830 2011
- Cortes , C. and Vapnik , V. Support-Vector Networks Machine Learning 20 3 273 297 1995
- Altman , N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression The American Statistician 46 3 175 185 1992
- Breiman , L. Random forests Machine Learning 45 1 5 32 2001
- Freund , Y. and Schapire , R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting Journal of Computer and System Sciences 55 1 119 139 1997
- Chen , T. and Guestrin , C. Xgboost: A Scalable Tree Boosting System Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2016 785 794
- Chollet , F. et al. 2015
- Verleysen , M. and François , D. The Curse of Dimensionality in Data Mining and Time Series Prediction International Work-Conference on Artificial Neural Networks 2005 758 770