This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Impact of CO2 Dilution on Ignition Delay Times of Iso-Octane at 15% and 30% Dilution Levels in a Rapid Compression Machine
Technical Paper
2019-01-0569
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Iso-Octane (2,2,4-trimethlypentane) is an important gasoline primary reference fuel (PRF) surrogate. Auto ignition of iso-octane was examined using a rapid compression machine (RCM) with iso-octane, air and carbon dioxide (CO2) mixtures. Experiments were conducted over a temperature range of 650K-900K at 20bar and 10 bar compressed conditions for equivalence ratios (Φ =) 0.6, 0.8, 1.0 and 1.3. CO2 dilution by mass was introduced at 0%, 15% and 30% levels with the O2:N2 mole ratio fixed at 1:3.76 emulating the exhaust gas recirculation (EGR) substitution in spark ignition (SI) engines. In this study the direct test chamber (DTC) approach is used for introducing iso-octane directly into the RCM test chamber via a direct injector. The results using this approach are compared with other RCM data available in the literature at undiluted Φ = 1.0 and 20 bar compressed pressure and show good agreement. For a given equivalence ratio, the negative temperature coefficient (NTC) region was fixed irrespective of the dilution levels confirming the fact that CO2 does not participate in the chemistry of the base fuel but rather reduces the reactivity leading to increased ignition delay times. At 30% dilution levels the increase in ignition delay times is more than twice that of the 15% dilution levels for the same compressed conditions and stoichiometry.
Recommended Content
Authors
Citation
Chinnathambi, P., Wadkar, C., and Toulson, E., "Impact of CO2 Dilution on Ignition Delay Times of Iso-Octane at 15% and 30% Dilution Levels in a Rapid Compression Machine," SAE Technical Paper 2019-01-0569, 2019, https://doi.org/10.4271/2019-01-0569.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
[Unnamed Dataset 1] | ||
[Unnamed Dataset 2] | ||
[Unnamed Dataset 3] |
Also In
References
- Kumano, K. and Yamaoka, S., “Analysis of Knocking Suppression Effect of Cooled EGR in Turbo-Charged Gasoline Engine,” SAE Technical Paper 2014-01-1217, 2014, doi:10.4271/2014-01-1217.
- Tingas, E.A., Im, H.G., Kyritsis, D.C., and Goussis, D.A., “The Use of CO 2 as an Additive for Ignition Delay and Pollutant Control in CH4/Air Autoignition,” Fuel 211:898-905, 2018, doi:10.1016/j.fuel.2017.09.022.
- Ladommatos, N., Abdelhalim, S.M., Zhao, H., and Hu, Z., The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 4: Effects of Carbon Dioxide and Water Vapour, 21.
- Nakagome, K., Shimazaki, N., Niimura, K., and Kobayashi, S., “Combustion and Emission Characteristics of Premixed Lean Diesel Combustion Engine,” SAE Technical Paper 970898, 1997, doi:10.4271/970898.
- Quader, A.A., “Why Intake Charge Dilution Decreases Nitric Oxide Emission from Spark Ignition Engines,” SAE Technical Paper 710009, 1971, doi:10.4271/710009.
- Cairns, A., Blaxill, H., and Irlam, G., “Exhaust Gas Recirculation for Improved Part and Full Load Fuel Economy in a Turbocharged Gasoline Engine,” SAE Technical Paper 2006-01-0047, 2006, doi:10.4271/2006-01-0047.
- Grandin, B., Ångström, H.-E., Stålhammar, P., and Olofsson, E., “Knock Suppression in a Turbocharged SI Engine by Using Cooled EGR,” SAE Technical Paper 982476, 1998, doi:10.4271/982476.
- Grandin, B. and Ångström, H.-E., “Replacing Fuel Enrichment in a Turbo Charged SI Engine: Lean Burn or Cooled EGR,” SAE Technical Paper 1999-01-3505, 1999, doi:10.4271/1999-01-3505.
- Hwang, K., Hwang, I., Lee, H., Park, H. et al., “Development of New High-Efficiency Kappa 1.6L GDI Engine,” SAE Technical Paper 2016-01-0667, 2016, doi:10.4271/2016-01-0667.
- Matsuo, S., Ikeda, E., Ito, Y., and Nishiura, H., “The New Toyota Inline 4 Cylinder 1.8L ESTEC 2ZR-FXE Gasoline Engine for Hybrid Car,” SAE Technical Paper 2016-01-0684, 2016, doi:10.4271/2016-01-0684.
- Vanhove, G., Petit, G., and Minetti, R., “Experimental Study of the Kinetic Interactions in the Low-Temperature Autoignition of Hydrocarbon Binary Mixtures and a Surrogate Fuel,” Combust. Flame 145(3):521-532, 2006, doi:10.1016/j.combustflame.2006.01.001.
- Davidson, D.F., Gauthier, B.M., and Hanson, R.K., “Shock Tube Ignition Measurements of Iso-Octane/Air and Toluene/Air at High Pressures,” Proc. Combust. Inst. 30(1):1175-1182, 2005, doi:10.1016/j.proci.2004.08.004.
- Di, H., He, X., Zhang, P., Wang, Z. et al., “Effects of Buffer Gas Composition on Low Temperature Ignition of Iso-Octane and n-Heptane,” Combust. Flame 161(10):2531-2538, 2014, doi:10.1016/j.combustflame.2014.04.014.
- He, X., Donovan, M.T., Zigler, B.T., Palmer, T.R. et al., “An Experimental and Modeling Study of Iso-Octane Ignition Delay Times under Homogeneous Charge Compression Ignition Conditions,” Combust. Flame 142(3):266-275, 2005, doi:10.1016/j.combustflame.2005.02.014.
- Griffiths, J.F., Halford-maw, P.A., and Rose, D.J., “Fundamental Features of Hydrocarbon Autoignition in a Rapid Compression Machine,” Combust. Flame 95(3):291-306, 1995, doi:10.1016/0010-2180(93)90133-N.
- Mittal, G. and Bhari, A., “A Rapid Compression Machine with Crevice Containment,” Combust. Flame 160(12):2975-2981, 2013, doi:10.1016/j.combustflame.2013.06.027.
- Walton, S., He, X., Zigler, B., Wooldridge, M. et al., “An Experimental Investigation of Iso-Octane Ignition Phenomena,” Combust. Flame 150(3):246-262, 2007, doi:10.1016/j.combustflame.2006.07.016.
- Curran, H., “A Comprehensive Modeling Study of Iso-Octane Oxidation,” Combust. Flame 129(3):253-280, 2002, doi:10.1016/S0010-2180(01)00373-X.
- Mehl, M., Pitz, W., Sarathy, M., Yang, Y. et al., “Detailed Kinetic Modeling of Conventional Gasoline at Highly Boosted Conditions and the Associated Intermediate Temperature Heat Release,” SAE Technical Paper 2012-01-1109, 2012, doi:10.4271/2012-01-1109.
- Atef, N., Kukkadapu, G., Mohamed, S.Y., Rashidi, M.A. et al., “A Comprehensive Iso-Octane Combustion Model with Improved Thermochemistry and Chemical Kinetics,” Combust. Flame 178:111-134, 2017, doi:10.1016/j.combustflame.2016.12.029.
- Goldsborough, S.S., Hochgreb, S., Vanhove, G., Wooldridge, M.S. et al., “Advances in Rapid Compression Machine Studies of Low- and Intermediate-Temperature Autoignition Phenomena,” Prog. Energy Combust. Sci. 63:1-78, 2017, doi:10.1016/j.pecs.2017.05.002.
- Healy, D., Curran, H.J., Simmie, J.M., Kalitan, D.M. et al., “Methane/Ethane/Propane Mixture Oxidation at High Pressures and at High, Intermediate and Low Temperatures,” Combust. Flame 155(3):441-448, 2008, doi:10.1016/j.combustflame.2008.07.003.
- Davidson, D.F. and Hanson, R.K., “Interpreting Shock Tube Ignition Data,” Int. J. Chem. Kinet. 36(9):510-523, 2004, doi:10.1002/kin.20024.
- Shen, H.-P.S., Vanderover, J., and Oehlschlaeger, M.A., “A Shock Tube Study of Iso-Octane Ignition at Elevated Pressures: The Influence of Diluent Gases,” Combust. Flame 155(4):739-755, 2008, doi:10.1016/j.combustflame.2008.06.001.
- Würmel, J., Silke, E.J., Curran, H.J., Ó Conaire, M.S. et al., “The Effect Of Diluent Gases on Ignition Delay Times in the Shock Tube and in the Rapid Compression Machine,” Combust. Flame 151(1-2):289-302, 2007, doi:10.1016/j.combustflame.2007.06.010.
- Wagnon, S.W. and Wooldridge, M.S., “Effects of Buffer Gas Composition on Autoignition,” Combust. Flame 161(4):898-907, 2014, doi:10.1016/j.combustflame.2013.09.022.
- Chen, Z., Zhang, P., Yang, Y., Brear, M.J. et al., “Impact of Nitric Oxide (NO) on n-Heptane Autoignition in a Rapid Compression Machine,” Combust. Flame 186:94-104, 2017, doi:10.1016/j.combustflame.2017.07.036.
- Mittal, G., Raju, M.P., and Bhari, A., “A Numerical Assessment of the Novel Concept of Crevice Containment in a Rapid Compression Machine,” Combust. Flame 158(12):2420-2427, 2011, doi:10.1016/j.combustflame.2011.04.013.
- Javed, T., Ahmed, A., Lovisotto, L., Issayev, G. et al., “Ignition Studies of Two Low-Octane Gasolines,” Combust. Flame 185:152-159, 2017, doi:10.1016/j.combustflame.2017.07.006.
- Allen, C., Toulson, E., Edwards, T., and Lee, T., “Application of a Novel Charge Preparation Approach to Testing the Autoignition Characteristics of JP-8 and Camelina Hydroprocessed Renewable Jet Fuel in a Rapid Compression Machine,” Combust. Flame 159(9):2780-2788, 2012, doi:10.1016/j.combustflame.2012.03.019.
- Boot, M.D., Tian, M., Hensen, E.J.M., and Mani Sarathy, S., “Impact of Fuel Molecular Structure on Auto-Ignition Behavior-Design Rules for Future High Performance Gasolines,” Prog. Energy Combust. Sci. 60:1-25, 2017, doi:10.1016/j.pecs.2016.12.001.
- Gallagher, S.M., Curran, H.J., Metcalfe, W.K., Healy, D. et al., “A Rapid Compression Machine Study of the Oxidation of Propane in the Negative Temperature Coefficient Regime,” Combust. Flame 153(1-2):316-333, 2008, doi:10.1016/j.combustflame.2007.09.004.
- Somers, K.P., Simmie, J.M., Gillespie, F., Conroy, C. et al., “A Comprehensive Experimental and Detailed Chemical Kinetic Modelling Study of 2,5-Dimethylfuran Pyrolysis and Oxidation,” Combust. Flame 160(11):2291-2318, 2013, doi:10.1016/j.combustflame.2013.06.007.
- Dec, J.E., Yang, Y., and Dronniou, N., “Boosted HCCI-Controlling Pressure-Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline,” SAE Int. J. Engines 4(1):1169-1189, 2011, doi:10.4271/2011-01-0897.
- Kukkadapu, G., Kumar, K., Sung, C.-J., Mehl, M. et al., “Autoignition of Gasoline Surrogates at Low Temperature Combustion Conditions,” Combust. Flame 162(5):2272-2285, 2015, doi:10.1016/j.combustflame.2015.01.025.
- Curran, H.J., Gaffuri, P., Pitz, W.J., and Westbrook, C.K., “A Comprehensive Modeling Study of n-Heptane Oxidation,” Combust. Flame 117(1-2):149-177, doi:10.1016/S0010-2180(97)00282-4.
- Toulson, E., Schock, H.J., and Attard, W.P., “A Review of Pre-Chamber Initiated Jet Ignition Combustion Systems,” SAE Technical Paper 2010-01-2263, 2010, doi:10.4271/2010-01-2263.
- Wadkar, C., Chinnathambi, P., and Toulson, E., “An Experimental Study on the factors affecting Ignition Delay of Ethanol in a Rapid Compression Machine,” SAE Technical Paper 2019-01-0576, 2019.