This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Simulation Based Predesign and Experimental Validation of a Prechamber Ignited HPDI Gas Combustion Concept
Technical Paper
2019-01-0259
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Using natural gas in large bore engines reduces carbon dioxide emissions by up to 25% at a lower fuel cost than diesel engines. In demanding applications with highly transient operating profiles, however, premix gas engines have disadvantages compared to diesel engines because of the potential for knocking and misfire to occur. Operating a gas engine using the diesel cycle requires high gas injection pressures. Furthermore, a source of ignition is needed due to the high autoignition temperature of methane. State-of-the-art solutions inject a small quantity of diesel fuel before introducing the natural gas. One monofuel alternative ignites the gas jets with flame torches that originate in a prechamber. This paper presents the simulation based development of a prechamber ignited high pressure direct injection (HPDI) gas combustion concept and subsequent experimental validation. After the most promising arrangement of the prechamber and the high pressure gas injector was selected, the main focus was on optimizing the prechamber geometry and prechamber operating conditions. 3D simulation models were set up to determine the optimal geometry of the prechamber combustion volume as well as the number, size and shape of the channels connecting the prechamber to the main combustion chamber. The prechamber optimization targets include trapped fuel mass and mixture quality in the prechamber. Combustion of the gas jets was predicted with the ECFM-3Z model under the assumption of ideal injection rates. The results of the 3D simulation were transferred to a 1D multicylinder engine model to generate statements about engine efficiency and to provide boundary conditions for experimental validation. The best prechamber design was selected for prototype manufacturing and testing on the single cylinder research engine. After the prechamber concept is validated, it will be possible to make initial statements on the feasibility of the overall combustion concept for large bore engines.
Recommended Content
Authors
Topic
Citation
Kammel, G., Mair, F., Zelenka, J., Lackner, M. et al., "Simulation Based Predesign and Experimental Validation of a Prechamber Ignited HPDI Gas Combustion Concept," SAE Technical Paper 2019-01-0259, 2019, https://doi.org/10.4271/2019-01-0259.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
[Unnamed Dataset 1] | ||
[Unnamed Dataset 2] | ||
[Unnamed Dataset 3] | ||
[Unnamed Dataset 4] | ||
[Unnamed Dataset 5] | ||
[Unnamed Dataset 6] |
Also In
References
- Mooser, D. “Brenngase und Gasmotoren,” in Mollenhauer, K. and Tschöke, H. (Hrsg.) Hand-buch Dieselmotoren, 3 (Berlin, Heidelberg, New York: Auflage, 2007).
- Friedrich, W. and Grzeszik, R. , “Mixture Formation in a CNG-DI Engine in Stratified Operation,” SAE Technical Paper 2015-24-2474, 2015, doi:10.4271/2015-24-2474.
- Merker, G.P., Schwarz, C., and Teichmann, R. , editors, Combustion Engines Development (Berlin Heidelberg: Springer, 2012), doi:10.1007/978-3-642-14094-5.
- Goudie, D., Dunn, M., Munshi, S.R. et al. , “Development of a Compression Ignition Heavy Duty Pilot-Ignited Natural Gas Fueled Engine for Low NOx Emissions,” SAE Technical Paper 2004-01-2954, 2004, doi:10.4271/2004-01-2954.
- Wärtsilä Corporation , “Wärtsilä 32GD Technology Review,” 2009, http://www.wartsila.com/file/Wartsila/en/1270037664966a1267106724867-W32GD_technology_review_2009_UK.pdf, accessed 02.08.2013.
- Mohr, H., and Frobenius, M. , “Optimierung von Diesel-/Gas-Großmotoren für unterschiedlichste Anwendungen,” in Harndorf, H. (Hrsg.): “Die Zukunft der Großmotoren III, 3. Rostocker Großmotorentagung,” Rostock, 2014.
- Heidt, C., Lambrecht, U., Hardinghaus, M., Knitschky, G., et al. , “CNG und LPG - Potenziale dieser Energieträger auf dem Weg zu einer nachhaltigeren Energieversorgung des Straßenverkehrs,” Kurzstudie, p. 7, 2013
- Simmer, L., Aschauer, G., and Schauer, O. , “LNG (Flüssigerdgas) - Einsatzmöglichkeiten und Potentiale zur Erhöhung der Flexibilität in Österreich und Zentraleuropa,” in 13. Symposium Energieinnovation, 2014
- IGU , "Life Cycle Assessment of LNG," 2012-2015 Triennium Work Rep., No. June, p. 43, 2015.
- Pischinger, R., Klell, M., and Sams, T. , Thermodynamik der Verbrennungskraftmaschine Third Edition (Vienna/New York: Springer, 2009).
- Trapp, C., Birgel, A., Spyra, N., Kopecek, H., and Chvatal, D. , “GE’s all New J920 Gas Engine - A Smart Accretion of Two-Stage Turbocharging, Ultra Lean Combustion Concept and Intelligent Controls,” CIMAC Paper 289, in CIMAC World Congress, May 13-16, 2013, Shanghai, China.
- Redtenbacher, C., Kiesling, C., Wimmer, A. et al. , “Dual Fuel Brennverfahren - Ein zukunfts-weisendes Konzept vom PKW- bis zum Großmotorenbereich?,” in Lenz, H. P. (Editor): 37. in In-Ternationales Wiener Motorensymposium, 2016.
- AVL Fire Documentation Version 2014. 2, Combustion Module.
- Colin O., Angelberger, C., and Benkenida A. , “3D Modeling of Mixing, Ignition and Combustion Phenomena in Highly Stratied Gasoline Engines,” 2003.
- Tabaczynski, R., Ferguson, C., and Radhakrishnan, K. , “A Turbulent Entrainment Model for Spark-Ignition Engine Combustion,” SAE Technical Paper 770647, 1977, doi:10.4271/770647.
- Backofen, D., Marohn, R., and Rolke P. “Beschreibung der Einblascharakteristik von Gasinjektoren mit dem IAV Injection Analyzer,” in Tschöke H. (eds) in 9. Tagung Diesel- und Benzindirekteinspritzung 2014. Proceedings, Springer Vieweg, Wiesbaden, 2015.
- Heywood, J. , Internal Combustion Engine Fundamentals (New York: McGraw-Hill, 1988).