This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Scalable Mean Value Modeling for Real-Time Engine Simulations with Improved Consistency and Adaptability
Technical Paper
2019-01-0195
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
This article discusses highly flexible and accurate physics-based mean value modeling (MVM) for internal combustion engines and its wide applicability towards virtual vehicle calibration. The requirement to fulfill the challenging Real Driving Emissions (RDE) standards has significantly increased the demand for precise engine models, especially models regarding pollutant emissions and fuel economy. This has led to a large increase in effort required for precise engine modeling and robust model calibration. Two best-practice engine modeling approaches will be introduced here to satisfy these requirements. These are the exclusive MVM approach, and a combination of MVM and a Design of Experiments (DOE) model for heterogeneous multi-domain engine systems. Both are evaluated using multiple engine operating conditions, transient cycles and different engines in order to highlight the practicability of MVM for a Hardware-in-the-Loop (HiL) virtual calibration platform and the consistency of extrapolated simulation results in all conditions.
The study demonstrates the application of both methods to establish adequate modeling approaches. These approaches enable the optimal trade-off between real-time computation, model complexity and effort required for model training. The proper choice of a model often depends on various project boundaries, such as the accessibility of base engine measurements for the characterization of the thermodynamic and kinetic processes in the engine sub-models. Additionally, the coverage of required phenomena for virtual engines is strongly related to the type of calibration tasks to be conducted on a HiL setup. As an example, the full MVM and the adapted air path MVM, integrated with a Gaussian process DOE in-cylinder combustion model, are introduced to meet diverse requirements from the calibration field. The further focus of the paper considers the optimization of a base model and its calibration in order to produce consistent simulation results, when compared with various driving cycles under extended environmental and various transient conditions. Also, the performance of scalable MVM for other hardware will be validated in the paper using a different reference engine application.
Recommended Content
Authors
Topic
Citation
Lee, S., Andert, J., Pischinger, S., Ehrly, M. et al., "Scalable Mean Value Modeling for Real-Time Engine Simulations with Improved Consistency and Adaptability," SAE Technical Paper 2019-01-0195, 2019, https://doi.org/10.4271/2019-01-0195.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
[Unnamed Dataset 1] | ||
[Unnamed Dataset 2] | ||
[Unnamed Dataset 3] |
Also In
References
- Blanco-Rodriguez, D., Vagnoni, G., and Holderbaum, B., “EU6 C-Segment Diesel Vehicles, a Challenging Segment to Meet RDE and WLTP Requirements,” IFAC-PapersOnLine 49(11):649-656, 2016, doi:10.1016/j.ifacol.2016.08.094.
- Lee, S.-Y., Andert, J., Neumann, D., Querel, C. et al., “Hardware-in-the-Loop Based Virtual Calibration Approach to Meet Real Driving Emissions Requirements,” SAE Technical Paper 2018-01-0869, 2018, doi:10.4271/2018-01-0869.
- Lee, S.Y., Andert, J., Querel, C., Schaub, J. et al. (eds.), “Virtual Calibration Based on X-in-the-Loop: HiL Simulation of Virtual Diesel Powertrain,” Simulation und Test, 19. MTZFachtagung, Hanau bei Frankfurt a. M., 26. & 27. Sept., 2017.
- Kötter, M., Lindemann, B., Bergmann, D., Ehrly, M. et al., “Powertrain Calibration Based on X-in-theLoop: Virtualization in the Vehicle Development Process,” . In: Bargende M., Reuss H.-C., and Wiedemann J., editors. 18. Internationales Stuttgarter Symposium, Proceedings. (Wiesbaden, Springer Fachmedien Wiesbaden, 2018). ISBN:978-3-658-21193-6:1187-1201.
- Trampert, S., Nijs, M., Huth, T., and Guse, D., “Simulation von realen Fahrszenarien am Prüfstand,” MTZ Extra 22(S1):12-19, 2017, doi:10.1007/s41490-017-0008-5.
- Wenig, M., Artuković, D., Armbruster, C., and Framke, N., “vRDE - A Virtual Extension of the RDE Tool Chain,” . In: Bargende M., Reuss H.-C., and Wiedemann J., editors. 17. Internationales Stuttgarter Symposium, Proceedings. (Wiesbaden, Springer Fachmedien Wiesbaden, 2017). ISBN:978-3-658-16987-9:365-381.
- Fontaras, G., Zacharof, N.-G., and Ciuffo, B., “Fuel Consumption and CO2 Emissions from Passenger Cars in Europe - Laboratory Versus Real-World Emissions,” Progress in Energy and Combustion Science 60:97-131, 2017, doi:10.1016/j.pecs.2016.12.004.
- Naber, D., Bareiss, S., Kufferath, A., Krüger, M. et al., “Measures to Fulfill,” . In: Bargende M., Reuss H.-C., and Wiedemann J., editors. 18. Internationales Stuttgarter Symposium, Proceedings. (Wiesbaden, Springer Fachmedien Wiesbaden, 2018). ISBN:978-3-658-21193-6:257-278.
- Fathy, H.K., Filipi, Z.S., Hagena, J., and Stein, J.L., “Review of Hardware-in-the-Loop Simulation and its Prospects in the Automotive Area,” Schum, K. and Sisti, A.F. (eds.), in Defense and Security Symposium, SPIE Proceedings, Orlando (Kissimmee), FL, April 17, 2006, SPIE:62280E, 2006.
- Lee, S.Y., Andert, J., Xia, F., Scheel, T. et al., “Real-Time Diesel Engine Modelling for HiL Based ECU Calibration,” in Symposium for Combustion Control, 2017.
- Scheickl, O., “Iming Constraints in Distributed Development of Automotive Real-Time Systems,” Dissertation, Technische Universität München, München, 2011.
- Isermann, R., “Elektronisches Management motorischer Fahrzeugantriebe: Elektronik, Modellbildung, Regelung und Diagnose für Verbrennungsmotoren, Getriebe und Elektroantriebe,” ATZ / MTZ-Fachbuch, Vieweg+Teubner Verlag / GWV Fachverlage GmbH Wiesbaden, Wiesbaden, ISBN 978-3-8348-0855-4, 2010.
- Isermann, R., “Engine Modeling and Control: Modeling and Electronic Management of Internal Combustion Engines,” Springer, Berlin, Heidelberg, s.l., ISBN 978-3-642-39933-6, 2014.
- Guzzella, L. and Onder, C.H., “Introduction to Modeling and Control of Internal Combustion Engine Systems,” Second Edition, Springer-Verlag, s.l., ISBN 978-3-642-10774-0, 2010.
- Quérel, C., Grondin, O., and Letellier, C., “Semi-Physical Mean-Value NOx Model for Diesel Engine Control,” Control Engineering Practice 40:27-44, 2015, doi:10.1016/j.conengprac.2015.02.005.
- Neumann, D., Jörg, C., Peschke, N., Schaub, J. et al., “Real-Time Capable Simulation of Diesel Combustion Processes for HiL Applications,” International Journal of Engine Research 60(12):146808741772622, 2017, doi:10.1177/1468087417726226.
- Xia, F., Lee, S.-Y., Andert, J., Kampmeier, A. et al., “Crank-Angle Resolved Real-Time Engine Modelling a Seamless Transfer from Concept Design to HiL Testing,” SAE Technical Paper 2018-01-1245, 2018, doi:10.4271/2018-01-1245.
- Gutjahr, T., Ulmer, H., and Ament, C., “Sparse Gaussian Processes with Uncertain Inputs for Multi-Step Ahead Prediction,” IFAC Proceedings Volumes 45(16):107-112, 2012, doi:10.3182/20120711-3-BE-2027.00072.
- Sánchez-Montañás, M.A., “Strategies for the Optimization of Large Scale Networks of Integrate and Fire Neurons,” . In: Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence. (). ISBN:978-3-540-45720-6.
- Pinamonti, S.A., Brancale, D., Meister, G., and Mendoza, P., “A Correlation Methodology between AVL Mean Value Engine Model and Measurements with Concept Analysis of Mean Value Representation for Engine Transient Tests,” SAE Technical Paper 2017-24-0053, 2017, doi:10.4271/2017-24-0053.
- Boccardo, G., Millo, F., Piano, A., Arnone, L. et al., “A Fully Physical Correlation for Low Pressure EGR Control Linearization,” SAE Technical Paper 2017-24-0011, 2017, doi:10.4271/2017-24-0011.
- Rasmussen, C.E. and Williams, C.K.I., “Gaussian Processes for Machine Learning,” . In: Adaptive Computation and Machine Learning. Third Edition. (Cambridge, MA, MIT Press, 2008). ISBN:0-262-18253-X.
- Röpke, K. and Gühmann, C. (eds.), Design of Experiments (DoE) in Powertrain Development, expert Verlag, Renningen, 2015, ISBN 978-3-8169-3316-8.
- Cengel, Y.A., “Heat Transfer: A Practical Approach,” Second Edition, McGraw-Hill, Boston, 2003, ISBN 978-0072458930.
- Chua, K., Bilanin, A.J., and Olson, M.E., “Engine Compartment Heat Rejection Analysis Via Navier-Stokes Simulations,” SAE Technical Paper 932971, 1993, doi:10.4271/932971.