Effect of Mixture Formation and Injection Strategies on Stochastic Pre-Ignition

2018-01-1678

09/10/2018

Features
Event
International Powertrains, Fuels & Lubricants Meeting
Authors Abstract
Content
Stochastic pre-ignition remains one of the major barriers limiting further engine downsizing and down-speeding; two widely used strategies for improving the efficiency of spark-ignited engines. One of the most cited mechanisms thought to be responsible for pre-ignition is the ignition of a rogue droplet composed of lubricant oil and fuel. This originates during mixture formation from interactions between the fuel spray and oil on the cylinder liner. In the present study, this hypothesis is further examined using a single cylinder supercharged engine which employs a range of air-fuel mixture formation strategies. These strategies include port-fuel injection (PFI) along with side and central direct injection (DI) of an E5 gasoline (RON 97.5) using single and multiple injection events. Computational fluid dynamic (CFD) calculations are then used to explain the observed trends. Overall, this study reinforces that interactions between the fuel spray and oil on the cylinder liner can be an important contributor towards stochastic pre-ignition. The occurrence of pre-ignition, as shown by CFD calculations, is successful after completion of two stages. The first stage involves the formation of precursors from interactions between the fuel spray and oil on the cylinder liner. This is shown to be dependent upon the mass of the fuel impinging on the cylinder liner. The second stage involves the ignition of the precursor, which is shown to be dependent upon the temperature of the air-fuel mixture near top dead center.
Meta TagsDetails
DOI
https://doi.org/10.4271/2018-01-1678
Pages
17
Citation
Singh, E., Mubarak Ali, M., Ichim, A., Morganti, K. et al., "Effect of Mixture Formation and Injection Strategies on Stochastic Pre-Ignition," SAE Technical Paper 2018-01-1678, 2018, https://doi.org/10.4271/2018-01-1678.
Additional Details
Publisher
Published
Sep 10, 2018
Product Code
2018-01-1678
Content Type
Technical Paper
Language
English