This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An Integrated Approach to Constitutive Modeling and Life Prediction for Automotive Materials

Journal Article
2018-01-1213
ISSN: 1946-3979, e-ISSN: 1946-3987
Published April 03, 2018 by SAE International in United States
An Integrated Approach to Constitutive Modeling and Life Prediction for Automotive Materials
Sector:
Citation: Wu, X., "An Integrated Approach to Constitutive Modeling and Life Prediction for Automotive Materials," SAE Int. J. Mater. Manf. 11(4):553-561, 2018, https://doi.org/10.4271/2018-01-1213.
Language: English

References

  1. Hill , R. The Mathematical Theory of Plasticity Oxford University Press 1998
  2. Miller , A.K. Constitutive Equations for Creep and Plasticity Elsevier Applied Science 1987
  3. Chaboche , J.L. A Review of Some Plasticity and Viscoplasticity Constitutive Theories Int. J. Plasticity 24 1642 1693 2008
  4. 2015
  5. Skelton , R.P. The Energy Density Exhaustion Method for Assessing the Creep-Fatigue Lives of Specimens and Components Materials at High Temperatures 30 3 183 201 2013
  6. Frost , H.J. and Ashby , M.F. Deformation Mechanisms Maps Oxford Pergamon Press 1982
  7. Wu , X.J. A Model of Nonlinear Fatigue-Creep (Dwell) Interactions ASME J. Gas Turbine Powers 131 032101/1 032101/6 2009
  8. Wu , X.J. An Integrated Creep-Fatigue Theory for Material Damage Modeling Key Engineering Materials 627 341 344 2015
  9. Wu , X.J. and Krausz , A.K. A Kinetics Formulation for Low-Temperature Plasticity J. Mater. Eng. Performance 3 169 177 1994
  10. Wu , X.J. , Yandt , S. , Au , P. , and Immarigeon , J.-P. Modeling Thermo-Mechanical Fatigue by Evolution of Its Activation Energy Thermomechanical Fatigue Behavior of Materials McGaw , M.A. , Kalluri , S. , Bressers , J. , and Peteves , S.D. West Conshohocken, PA American Society for Testing and Materials 2002
  11. Wu , X.J. and Koul , A.K. Grain Boundary Sliding in the Presence of Grain Boundary Precipitates during Transient Creep Metall. Trans. A 26 905 913 1995
  12. Wu , X.J. and Koul , A.K. Grain Boundary Sliding at Serrated Grain Boundaries Advanced Performance Materials 4 409 420 1997
  13. Wu , X. , Williams , S. , and Gong , D. A True-Stress Creep Model Based on Deformation Mechanisms for Polycrystalline Materials J. Mater. Eng. Perform. 21 2255 2262 2012
  14. Zhang , X.Z. , Wu , X.J. , Liu , R. , Liu , J. et al. Deformation-Mechanism-Based Modeling of Creep Behavior of Modified 9Cr-1Mo Steel Mater. Sci. Eng. A 689 345 352 2017
  15. Wu , X.J. On Tanaka-Mura’s Fatigue Crack Nucleation Model and Validation Fatigue and Fracture of Engineering Materials and Structures 2017
  16. Neu , R. and Sehitoglu , H. Thermo-Mechanical Fatigue, Oxidation and Creep: Part 2-Life Prediction Metall. Trans. A 20A 1769 1783 1989
  17. Wu , X.J. , Quan , G. , MacNeil , R. , Zhang , Z. et al. Failure Mechanisms and Damage Model of Ductile Cast Iron under Low-Cycle Fatigue Conditions Metall. Mater. Trans. 45A 5088 5097 2014
  18. 2004
  19. Kobayashi , T. , Nishino , K. , Kimoto , Y. , Awano , Y. et al. 673K Embrittlement of Ferritic Spheroidal Graphite Cast Iron by Magnesium Casting Engineering 70 273 278 1998
  20. Wu , X.J. , Quan , G. , MacNeil , R. , Zhang , Z. et al. Thermomechanical Fatigue of Ductile Cast Iron and its Life Prediction Metall. Mater. Trans. A 46A 2530 2542 2015
  21. 2010
  22. Wu , X.J. , Quan , G. , and Sloss , C. Mechanism-Based Modeling for Low Cycle Fatigue of Cast Austenitic Steel Metall. Mater. Trans. A 2017 10.1007/s11661-017-4160-4
  23. Morrow , J.D. 45 84 1965

Cited By