This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Combustion Behavior of an RF Corona Ignition System with Different Control Strategies
Technical Paper
2018-01-1132
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
It has been proved that Radio Frequency Corona, among other innovative ignition systems, is able to stabilize combustion and to extend the engine operating range in lean conditions, with respect to conventional spark igniters. This paper reports on a sensitivity analysis on the combustion behavior for different values of Corona electric control parameters (supply voltage and discharge duration). Combustion analysis has been carried out on a single cylinder PFI gasoline-fueled optical engine, by means of both indicating measurements and imaging. A high-speed camera has been used to record the natural luminosity of premixed flames and the obtained images have been synchronized with corresponding indicating acquisition data. Imaging tools allowed to observe and measure the early flame development, providing information which are not obtainable by a pressure-based indicating system. At different air-fuel ratio values, ranging from stoichiometric to lean limit, combustion stability has been evaluated for each combination of supply voltage and corona duration. Varying these parameters, it has been possible to assess the operating range of the corona igniter. In some limiting instances (far from normal operating range) not all the Corona igniter electrode tips were able to generate a discharge, worsening combustion onset: a statistical analysis of this phenomenon has been carried out. Cycle-resolved equivalent flame radii development and flame probability at fixed equivalent radius have been investigated for each condition. Finally, a suitable dataset of supply voltage and corona duration values, which guarantee a fast combustion onset and stable conditions, has been determined.
Recommended Content
Authors
- Alessandro Cimarello - Universita degli Studi di Perugia
- Valentino Cruccolini - Universita degli Studi di Perugia
- Gabriele Discepoli - Universita degli Studi di Perugia
- Michele Battistoni - Universita degli Studi di Perugia
- Francesco Mariani - Universita degli Studi di Perugia
- Carlo Grimaldi - Universita degli Studi di Perugia
- Massimo Dal Re - Federal-Mogul Powertrain Group
Topic
Citation
Cimarello, A., Cruccolini, V., Discepoli, G., Battistoni, M. et al., "Combustion Behavior of an RF Corona Ignition System with Different Control Strategies," SAE Technical Paper 2018-01-1132, 2018, https://doi.org/10.4271/2018-01-1132.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
[Unnamed Dataset 1] | ||
[Unnamed Dataset 2] | ||
[Unnamed Dataset 3] | ||
[Unnamed Dataset 4] | ||
[Unnamed Dataset 5] | ||
[Unnamed Dataset 6] | ||
[Unnamed Dataset 7] |
Also In
References
- Aleiferis, P.G., Taylor, A.M.K.P., Ishii, K., and Urata, Y. , “The Nature of Early Flame Development in a Lean-Burn Stratified-Charge Spark-Ignition Engine,” Combustion and Flame 136(3):283-302, 2004, doi:10.1016/j.combustflame.2003.08.011.
- Tully, E.J. and Heywood, J.B. , “Lean-Burn Characteristics of a Gasoline Engine Enriched with Hydrogen Plasmatron Fuel Reformer,” SAE Technical Paper 2003-01-0630 , 2003, doi:10.4271/2003-01-0630.
- Goldwitz, J.A. and Heywood, J.B. , “Combustion Optimization in a Hydrogen-Enhanced Lean-Burn SI Engine,” SAE Technical Paper 2005-01-0251 , 2005, doi:10.4271/2005-01-0251.
- Battistoni, M., Poggiani, C., and Grimaldi, C.N. , “Experimental Investigation of a Port Fuel Injected Spark Ignition Engine Fuelled with Variable Mixtures of Hydrogen and Methane,” SAE Tech. Pap. (2013-01-0226), 2013, doi:10.4271/2013-01-0226.
- Wei, H., Zhu, T., Shu, G., Tan, L., and Wang, Y. , “Gasoline Engine Exhaust Gas Recirculation - A Review,” Applied Energy 99:534-544, 2012, doi:10.1016/j.apenergy.2012.05.011.
- Francqueville, L. and Michel, J.-B. , “On the Effects of EGR on Spark-Ignited Gasoline Combustion at High Load,” SAE Int. J. Engines 7(4):1808-1823, 2014, doi:10.4271/2014-01-2628.
- Heywood, J.B. , “Internal Combustion Engine Fundamentals,” McGraw-Hill, ISBN 0-07-028637-X, 1988.
- Poggiani, C., Cimarello, A., Battistoni, M., Grimaldi, C.N., Dal Re, M. a., and Cesare, M.D. , “Optical Investigations on a Multiple Spark Ignition System for Lean Engine Operation,” SAE Technical Papers 2016-01-0711 , ISBN 2016010711, 2016, doi:10.4271/2016-01-0711
- Poggiani, C., Battistoni, M., Grimaldi, C., and Magherini, A. , “Experimental Characterization of a Multiple Spark Ignition System,” Energy Procedia 82:89-95, 2015, doi:10.1016/j.egypro.2015.11.887.
- Alger, T., Gingrich, J., Roberts, C., Mangold, B., and Sellnau, M. , “A High-Energy Continuous Discharge Ignition System for Dilute Engine Applications,” SAE Technical Paper 2013-01-1628 , 2013, doi:10.4271/2013-01-1628.
- Sher, E., Ben-Ya’ish, J., Pokryvailo, A., and Spector, Y. , “A Corona Spark Plug System for Spark-Ignition Engines,” SAE Technical Paper 920810 , 1992, doi:10.4271/920810.
- Varma, A.R. and Thomas, S. , “Simulation, Design and Development of a High Frequency Corona Discharge Ignition System,” SAE Technical Paper 2013-26-0014 , 2013, doi:10.4271/2013-26-0014.
- Burrows, J., Mixell, K., Reinicke, P.B., Riess, M. , Sens, M. , “Corona Ignition - Assessment of Physical Effects by Pressure Chamber, Rapid Compression Machine, and Single Cylinder Engine Testing,” 2nd International Conference on Ignition Systems for Gasoline Engines, 2014.
- Mariani, A. and Foucher, F. , “Radio Frequency Spark Plug: An Ignition System for Modern Internal Combustion Engines,” Applied Energy 122:151-161, 2014, doi:10.1016/j.apenergy.2014.02.009.
- Domingues, E., Burey, M., Lecordier, B., and Vervisch, P. , “Ignition in an SI Engine using Nanosecond Discharges generated by a Spark Gap Plasma Igniter (SGPI),” SAE Technical Paper 2008-01-1628 , 2008, doi:10.4271/2008-01-1628.
- Shiraishi, T., Urushihara, T., and Gundersen, M. , “A Trial of Ignition Innovation of Gasoline Engine by Nanosecond Pulsed Low Temperature Plasma Ignition,” Journal of Physics D: Applied Physics 42(13):135208, 2009, doi:10.1088/0022-3727/42/13/135208
- Starikovskii, A.Y., Anikin, N.B., Kosarev, I.N., Mintoussov, E.I. et al. , “Nanosecond-Pulsed Discharges for Plasma-Assisted Combustion and Aerodynamics,” Journal of Propulsion and Power 24(6):1182-1197, 2008, doi:10.2514/1.24576.
- Sevik, J., Wallner, T., Pamminger, M., Scarcelli, R., Singleton, D., and Sanders, J. , “Extending Lean and Exhaust Gas Recirculation-Dilute Operating Limits of a Modern Gasoline Direct-Injection Engine Using a Low-Energy Transient Plasma Ignition System,” Journal of Engineering for Gas Turbines and Power 138(11):112807, 2016, doi:10.1115/1.4033470
- Ikeda, Y., Padala, S., Makita, M., and Nishiyama, A. , “Development of Innovative Microwave Plasma Ignition System with Compact Microwave Discharge Igniter,” SAE Technical Paper 2015-24-2434 , 2015, doi:10.4271/2015-24-2434.
- Chang, J.S., Lawless, P.A., and Yamamoto, T. , “Corona Discharge Processes,” IEEE Transactions on Plasma Science 19(6):1152-1166, 1991, doi:10.1109/27.125038.
- Ju, Y. and Sun, W. , “Plasma Assisted Combustion: Dynamics and Chemistry,” Progress in Energy and Combustion Science 48:21-83, 2015, doi:10.1016/j.pecs.2014.12.002.
- Ju, Y. and Sun, W. , “Plasma Assisted Combustion: Progress, Challenges, and Opportunities,” Combustion and Flame 162(3):529-532, 2015, doi:10.1016/j.combustflame.2015.01.017.
- Starikovskaia, S.M. , “Plasma Assisted Ignition and Combustion,” Journal of Physics D: Applied Physics 39(16):R265-R299, 2006, doi:10.1088/0022-3727/39/16/R01.
- Starikovskiy, A. and Aleksandrov, N. , “Plasma-Assisted Ignition and Combustion,” Progress in Energy and Combustion Science 39(1):61-110, 2013, doi:10.1016/j.pecs.2012.05.003.
- Yu, S., Wang, M., and Zheng, M. , “Distributed Electrical Discharge to Improve the Ignition of Premixed Quiescent and Turbulent Mixtures,” SAE Technical Paper 2016-01-0706 , 2016, doi:10.4271/2016-01-0706.
- Wang, F., Liu, J.B., Sinibaldi, J., Brophy, C. et al. , “Transient plasma ignition of quiescent and flowing air/fuel mixtures,” IEEE Trans. Plasma Sci 33(2 II):844-849, 2005, doi:10.1109/TPS.2005.845251.
- Pineda, D.I., Wolk, B., Chen, J.-Y., and Dibble, R.W. , “Application of Corona Discharge Ignition in a Boosted Direct-Injection Single Cylinder Gasoline Engine: Effects on Combustion Phasing, Fuel Consumption, and Emissions,” SAE Int. J. Engines 9(3):1970-1988, 2016, doi:10.4271/2016-01-9045.
- Schenk, M., Schauer, F.X., Sauer, C., Weber, G., Hahn, J., and Schwarz, C. , “Challenges to the Ignition System of Future Gasoline Engines - An Application Oriented Systems Comparison,” Ignition Systems for Gasoline Engines, Springer International Publishing, Cham: 3-25, 2016, doi:10.1007/978-3-319-45504-4_1
- Bresler, M., Attard, W., and Reese, R. , “Investigation of Alternative Ignition System Impact on External EGR Dilution Tolerance in a Turbocharged Homogeneous Direct Injected Spark Ignited Engine,” SAE Int. J. Engines 8(4):1967-1976, 2015, doi:10.4271/2015-01-9043.
- Idicheria, C.A., and Najt, P.M. , “Potential of Advanced Corona Ignition System (ACIS) for Future Engine Applications,” Ignition Systems for Gasoline Engines, Springer International Publishing, Cham, ISBN 978-3-319-45503-7: 315-331, 2017, doi:10.1007/978-3-319-45504-4_19
- Marko, F., König, G., Schöffler, T., Bohne, S., and Dinkelacker, F. , “Comparative Optical and Thermodynamic Investigations of High Frequency Corona- and Spark-Ignition on a CV Natural Gas Research Engine Operated with Charge Dilution by Exhaust Gas Recirculation,” Ignition Systems for Gasoline Engines, Springer International Publishing, Cham, ISBN 978-3-319-45503-7: 293-314, 2017, doi:10.1007/978-3-319-45504-4_18
- Cimarello, A., Grimaldi, C.N., Mariani, F., Battistoni, M., and Dal Re, M. , “Analysis of RF Corona Ignition in Lean Operating Conditions Using an Optical Access Engine,” SAE Technical Paper, 2017-24-0673 , 2017, doi:10.4271/2017-01-0673.
- Burrows, J. and Mixell, K. , “Analytical and Experimental Optimization of the Advanced Corona Ignition System,” . In: Ignition Systems for Gasoline Engines. (Cham, Springer International Publishing, 2017), 267-292, doi:10.1007/978-3-319-45504-4_17.
- Aleiferis, P.G., Serras-Pereira, J., and Richardson, D. , “Characterisation of Flame Development with Ethanol, Butanol, Iso-Octane, Gasoline and Methane in a Direct-Injection Spark-Ignition Engine,” Fuel 109:256-278, 2013, doi:10.1016/j.fuel.2012.12.088.
- Merola, S.S., Irimescu, A., Valentino, G., Tornatore, C. et al. , “Experimental Evaluation of an Advanced Ignition System for GDI Engines,” SAE Int. J. Engines 8(5):2351-2367, 2015, doi:10.4271/2015-24-2520.
- Afkhami, B., Wang, Y., Miers, S.A., and Naber, J.D. , “Experimental Study of Flame Stretch Under Engine-Like Conditions,” Proc. ASME 2017 Intern. Combust. Fall Tech. Conf. ICEF2017 1-8, 2017, doi:10.1115/ICEF2017-3636
- Shawal, S., Goschutz, M., Schild, M., Kaiser, S. et al. , “High-Speed Imaging of Early Flame Growth in Spark-Ignited Engines Using Different Imaging Systems via Endoscopic and Full Optical Access,” SAE Int. J. Engines 9(2):704-718, 2016, doi:10.4271/2016-01-0644.
- Aleiferis, P.G. and Behringer, M.K. , “Flame Front Analysis of Ethanol, Butanol, Iso-Octane and Gasoline in a Spark-Ignition Engine Using Laser Tomography and Integral Length Scale Measurements,” Combustion and Flame 162(12):4533-4552, 2015, doi:10.1016/j.combustflame.2015.09.008.