This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Hybrid Thermal Bus for Ground Vehicles Featuring Parallel Heat Transfer Pathways

Published April 3, 2018 by SAE International in United States
A Hybrid Thermal Bus for Ground Vehicles Featuring Parallel Heat Transfer Pathways
Sector:
Citation: Shoai Naini, S., Huang, J., Miller, R., Wagner, J. et al., "A Hybrid Thermal Bus for Ground Vehicles Featuring Parallel Heat Transfer Pathways," SAE Int. J. Commer. Veh. 11(5):307-320, 2018, https://doi.org/10.4271/2018-01-1111.
Language: English

References

  1. Chen, Y.M. and Ting, J.M. , “Ultra High Thermal Conductivity Polymer Composites,” Carbon 40(3):359-362, 2002.
  2. Chen, J.K. and Huang, I.S. , “Thermal Properties of Aluminum-Graphite Composites by Powder Metallurgy,” Composites Part B: Engineering 44(1):698-703, 2013.
  3. Yolshina, L.A., Muradymov, R.V., Korsun, I.V., Yakovlev, G.A. et al. , “Novel Aluminum-Graphene and Aluminum-Graphite Metallic Composite Materials: Synthesis and Properties,” Journal of Alloys and Compounds 663:449-459, 2016.
  4. Huang, Y., Ouyang, Q., Zhang, D., Zhu, J. et al. , “Carbon Materials Reinforced Aluminum Composites: A Review,” Acta Metallurgica Sinica 27(5):775-786, 2014.
  5. Golecki, I., Xue, L., Leung, R., Walker, T. et al. , “Properties of High Thermal Conductivity Carbon-Carbon Composites for Thermal Management Applications,” in High-Temperature Electronic Materials, Devices and Sensors Conference, 1998, 190-195.
  6. Babapoor, A., Azizi, M., and Karimi, G. , “Thermal Management of a Li-Ion Battery Using Carbon Fiber-PCM Composites,” Applied Thermal Engineering 82:281-290, 2015.
  7. Zweben, C. , “Advances in Composite Materials for Thermal Management in Electronic Packaging,” Journal of the Minerals, Metals and Materials Society 50(6):47-51, 1998.
  8. Goli, P., Legedza, S., Dhar, A., Salgado, R. et al. , “Graphene-Enhanced Hybrid Phase Change Materials for Thermal Management of Li-Ion Batteries,” Journal of Power Sources 248:37-43, 2014.
  9. Greco, A., Jiang, X., and Cao, D. , “An Investigation of Lithium-Ion Battery Thermal Management Using Paraffin/Porous-Graphite-Matrix Composite,” Journal of Power Sources 278:50-68, 2015.
  10. Mallik, S., Ekere, N., Best, C., and Bhatti, R. , “Investigation of Thermal Management Materials for Automotive Electronic Control Units,” Applied Thermal Energy 31((2-3):355-362, 2011.
  11. Maydanik, Y.F. , “Loop Heat Pipes,” Applied Thermal Engineering 25(5):635-657, 2005.
  12. Faghri, A. , “Heat Pipes: Review, Opportunities and Challenges,” Frontiers in Heat Pipes (FHP), 2014, doi:10.5098/fhp.5.1.
  13. Parsons, K.K. , “Design and Simulation of Passive Thermal Management System for Lithium-Ion Battery Packs on an Unmanned Ground Vehicle,” 2012, doi:10.1115/1.4034904.
  14. Rao, Z., Wang, S., Wu, M., Lin, Z. et al. , “Experimental Investigation on Thermal Management of Electric Vehicle Battery with Heat Pipe,” Energy Conversion and Management 65:92-97, 2013.
  15. Chernysheva, M.A., Yushakova, S.I., and Maydanik, Y.F. , “Copper-Water Loop Heat Pipes for Energy-Efficient Cooling Systems of Supercomputers,” Energy 69:534-542, 2014.
  16. Park, C., Zuo, J., Rogers, P., and Perez, J. , “Hybrid Loop Thermal Bus Technology for Vehicle Thermal Management,” in Proceedings of the 24th Army Science Conference, Orlando, FL, 2004.
  17. Park, C., Vallury, A., and Perez, J. , “Advanced Hybrid Cooling Loop Technology for High Performance Thermal Management,” in 4th International Energy Conversion Engineering Conference, AIAA 2006-4059, San Diego, CA, 2006.
  18. Tang, X., Zuo, J., and Goryca, M. , “Development of Heat Pipe Loop Technology for Military Vehicle Electronics Cooling,” in NDIA Ground Vehicle Systems Engineering and Technology Symposium, Dearborn, MI, 2010.
  19. Tao, X. and Wagner, J.R. , “An Engine Thermal Management System Design for Military Ground Vehicle - Simultaneous Fan, Pump and Valve Control,” SAE Int. J. Passeng. Cars - Electron. Electr. Syst. 9(10):243-254, 2016, doi:10.4271/2016-01-0310.
  20. Tao, X., Zhou, K., Ivanco, A., Wagner, J.R. et al. , “A Hybrid Electric Vehicle Thermal Management System - Nonlinear Controller Design,” in Proceedings of SAE World Congress, No. 2015-01-1710, Detroit, MI, 2015.
  21. Ling, Z., Wang, F., Fang, X., Gao, X. et al. , “A Hybrid Thermal Management System for Lithium-Ion Batteries Combining Phase Change Materials with Forced-Air Cooling,” Applied Energy 148:403-409, 2015.
  22. Fathabadi, H. , “High Thermal Performance Lithium-Ion Battery Pack Including Hybrid Active-Passive Thermal Management System for Using in Hybrid/Electric Vehicles,” Energy 70:529-538, 2014.
  23. Shoai Naini, S., Huang, J.A., Miller, R., Wagner, J.R. et al. , “A Thermal Bus for Vehicle Cooling Applications - Design and Analysis,” SAE Int. J. Commer. Veh. 10(1):122-131, 2017, doi:10.4271/2017-01-0266.
  24. Berber, S., Kwon, Y.K., and Tománek, D. , “Unusually High Thermal Conductivity of Carbon Nanotubes,” Physical Review Letters 84(20):4613, 2000.
  25. Kim, P., Shi, L., Majumdar, A., and McEuen, P.L. , “Thermal Transport Measurements of Individual Multiwalled Nanotubes,” Physical Review Letters 87(21):215502, 2001.
  26. Launay, S., Sartre, V., and Bonjour, J. , “Analytical Model for Characterization of Loop Heat Pipes,” Journal of Thermophysics and Heat Transfer 22(4):623-631, 2008.
  27. Mo, S., Hu, P., Cao, J., Chen, Z. et al. , “Effective Thermal Conductivity of Moist Porous Sintered Nickel Material,” International Journal of Thermophysics 27(1):304-313, 2006.
  28. Chuang, P.Y.A. , “An Improved Steady-State Model of Loop Heat Pipes Based on Experimental and Theoretical Analyses,” Ph.D. dissertation, Department of Mechanical Engineering, Pennsylvania State University, State College, PA, 2003.
  29. Wang, T. and Wagner, J. , “Advanced Engine Cooling System Subjected to Ram Air Effect? Nonlinear Adaptive Multiple Input and Multiple Output (NAMIMO) Control,” IEEE Transactions on Vehicular Technology, 2017.
  30. Lee, H.S. , Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells (NJ: Wiley & Sons, 2010).
  31. UQM PM 145 E-Motor Specification Datasheet, https://www.uqm.com/products/propulsion/commercial-vehicles/default.aspx, accessed Oct. 2017.

Cited By