This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Double Compression Expansion Engine: A Parametric Study on a High-Efficiency Engine Concept
Technical Paper
2018-01-0890
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
The Double compression expansion engine (DCEE) concept has exhibited a potential for achieving high brake thermal efficiencies (BTE). The effect of different engine components on system efficiency was evaluated in this work using GT Power simulations. A parametric study on piston insulation, convection heat transfer multiplier, expander head insulation, insulation of connecting pipes, ports and tanks, and the expander intake valve lift profiles was conducted to understand the critical parameters that affected engine efficiency. The simulations were constrained to a constant peak cylinder pressure of 300 bar, and a fixed combustion phasing. The results from this study would be useful in making technology choices that will help realise the potential of this engine concept.
Recommended Content
Journal Article | Numerical Investigation on the Effects of Different Thermal Insulation Strategies for a Passenger Car Diesel Engine |
Technical Paper | Coatings for Improving Engine Performance |
Authors
Topic
Citation
Bhavani Shankar, V., Johansson, B., and Andersson, A., "Double Compression Expansion Engine: A Parametric Study on a High-Efficiency Engine Concept," SAE Technical Paper 2018-01-0890, 2018, https://doi.org/10.4271/2018-01-0890.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 |
Also In
References
- Delgado , O. and Lutsey , N. 2014
- Lam , N. , Tuner , M. , Tunestal , P. , Andersson , A. et al. Double Compression Expansion Engine Concepts: A Path to High Efficiency SAE Int. J. Engines 8 4 1562 1578 2015 10.4271/2015-01-1260
- Bhavani Shankar , V.S. , Lam , N. , Andersson , A. , and Johansson , B. SAE Technical Paper 2017-01-0636 2017 10.4271/2017-01-0636
- Gingrich , E. , Ghandhi , J. , and Reitz , R.D. Experimental Investigation of Piston Heat Transfer in a Light Duty Engine Under Conventional Diesel, Homogeneous Charge Compression Ignition, and Reactivity Controlled Compression Ignition Combustion Regimes SAE Int. J. Engines 7 1 375 386 2014 10.4271/2014-01-1182
- Jones , J. Heat Losses in Conventional- and Insulated Exhaust Ports Lund University 2015
- Jaichandar , S. and Tamilporai , P. Low Heat Rejection Engines – An Overview SAE Technical Paper 2003-01-0405 2003 10.4271/2003-01-0405
- Woschni , G. , Spindler , W. , and Kolesa , K. Heat Insulation of Combustion Chamber Walls – A Measure to Decrease the Fuel Consumption of I.C. Engines? SAE Technical Paper 87033 1987 10.4271/870339
- Alkidas , A.C. Performance and Emissions Achievements with an Uncooled Heavy-Duty, Single-Cylinder Diesel Engine SAE Technical Paper 890144 1989 10.4271/890144
- No , S.H. , Kobiri , S. , Kamimoto , T. , and Enomoto , Y. High-Temperature Diesel Combustion in a Rapid Compression-Expansion Machine SAE Technical Paper 911845 1991 10.4271/911845
- Uchida , N. and Osada , H. A New Piston Insulation Concept for Heavy-Duty Diesel Engines to Reduce Heat Loss from the Wall SAE Int. J. Engines 10 5 2565 2574 2017 10.4271/2017-24-0161
- Tuner , M. , Johansson , B. , Keller , P. , and Becker , M. Loss Analysis of a HD-PPC Engine with Two-Stage Turbocharging Operating in the European Stationary Cycle SAE Technical Paper 2013-01-27 2013 10.4271/2013-01-2700
- Chuahy , F.D.F. and Kokjohn , S.L. High Efficiency Dual-Fuel Combustion through Thermochemical Recovery and Diesel Reforming Appl. Energy 195 503 522 2017 10.1016/j.apenergy.2017.03.078
- Manente , V. , Zander , C.-G. , Johansson , B. , Tunestal , P. et al. An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency from Idle to Max Load Using Gasoline Partially Premixed Combustion SAE Technical Paper 2010-01-2198 2010 10.4271/2010-01-2198