This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Enhanced Two-stage Ignition Delay Model Based on Molar Fraction of Fuel Components for SI Engine Simulation
Technical Paper
2018-01-0849
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Simulation based design and control optimization is widely used to assist the development of highly complex modern downsized turbocharged gasoline direct injection (GDI) engines. In such engines, knock phenomenon is a major constraint that limits performance and fuel economy enhancements. Thus, an accurate knock prediction model is critically important for virtual engine development process.
In this paper, an enhanced ignition delay model is proposed for spark ignition (S)I combustion model based on previously developed empirical two-stage ignition delay model using fuel blends [1]. The ignition delay model provides a capability of predicting ignition delay of the end-gas zone for different fuel blends without additional calibration when fuel blending ratio changes. To adapt the ignition delay model to the SI combustion environment, the model is modified to have the sensitivity to the dilution effect by residual gas. Shock tube experimental data from the literature were collected and used to validate the dilution effect model. The ignition delay model developed in this study is implemented into a commercial simulation code (GT-Power®) as a user subroutine for a versatile simulation capability. Experimental data are taken from a 4-cylinder turbocharged GDI engine at various engine operating conditions. The experimental data are processed to extract the auto-ignition timings for the operation conditions in which knock is clearly observed. The ignition delay model integrated with the engine simulation is calibrated at reference cases and validated with various knocking and non-knocking cases.
Authors
Citation
Kwak, K., Jung, D., Park, H., Paeng, J. et al., "Enhanced Two-stage Ignition Delay Model Based on Molar Fraction of Fuel Components for SI Engine Simulation," SAE Technical Paper 2018-01-0849, 2018, https://doi.org/10.4271/2018-01-0849.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 | ||
Unnamed Dataset 5 | ||
Unnamed Dataset 6 |
Also In
References
- Ma , J. , Kwak , K.H. , Lee , B. , and Jung , D. An Empirical Modeling Approach for the Ignition Delay of Fuel Blends Based on the Molar Fractions of Fuel Components Fuel 164 305 313 2016 10.1016/j.fuel.2015.09.069
- Lake , T. , Stokes , J. , Murphy , R. , Osborne , R. et al. Turbocharging Concepts for Downsized DI Gasoline Engines SAE Technical Paper 2004-01-0036 2004 10.4271/2004-01-0036
- Bandel , W. , Fraidl , G.K. , Kapus , P.E. , Sikinger , H. et al. The Turbocharged GDI Engine: Boosted Synergies for High Fuel Economy Plus Ultra-low Emission SAE Technical Paper 2006-01-1266 2006 10.4271/2006-01-1266
- Liu , Z. and Chen , R. A Zero-Dimensional Combustion Model with Reduced Kinetics for SI Engine Knock Simulation Combust. Sci. Technol. 181 6 828 852 2009 10.1080/00102200902864704
- Bozza , F. , De Bellis , V. , and Siano , D. A Knock Model for 1D Simulations Accounting for Cyclic Dispersion Phenomena SAE Technical Paper 2014-01-2554 2014 10.4271/2014-01-2554
- Heywood , J. Internal Combustion Engine Fundamentals McGraw-Hill 0-07-028637-X 1988
- Douaud , A.M. and Eyzat , P. Four-Octane-Number Method for Predicting the Anti-Knock Behavior of Fuels and Engines SAE Technical Paper 780080 1978 10.4271/780080
- Kim , K.S. and Ghandhi , J. Preliminary Results from a Simplified Approach to Modeling the Distribution of Engine Knock SAE Technical Paper 2012-32-0004 2012 10.4271/2012-32-0004
- He , X. , Donovan , M.T. , Zigler , B.T. , Palmer , T.R. et al. An Experimental and Modeling Study of Iso-Octane Ignition Delay Times under Homogeneous Charge Compression Ignition Conditions Combust. Flame 142 3 266 275 2005 10.1016/j.combustflame.2005.02.014
- Hoepke , B. , Jannsen , S. , Kasseris , E. , and Cheng , W.K. EGR Effects on Boosted SI Engine Operation and Knock Integral Correlation SAE Int. J. Engines 5 2 547 559 2012 10.4271/2012-01-0707
- Chen , L. , Li , T. , Yin , T. , and Zheng , B. A Predictive Model for Knock Onset in Spark-Ignition Engines with Cooled EGR Energy Convers. Manag. 87 946 955 2014 10.1016/j.enconman.2014.08.002
- Law , C. K. Combustion Physics 1st ed. Cambridge University Press 0-521-15421-9 2010
- Piazzullo , D. , Costa , M. , Ra , Y. , Rocco , V. et al. Development of a Reduced Chemical Mechanism for Combustion of Gasoline-Biofuels SAE Technical Paper 2017-24-0039 2017
- D’Adamo , A. , Breda , S. , Iaccarino , S. , Berni , F. et al. Development of a RANS-Based Knock Model to Infer the Knock Probability in a Research Spark-Ignition Engine SAE Int. J. Engines 10 3 722 739 2017 10.4271/2017-01-0551
- Weisser , G. A. 2001
- Yates , A.D.B. and Viljoen , C.L. An Improved Empirical Model for Describing Auto-ignition SAE Technical Paper 2008-01-1629 2008 10.4271/2008-01-1629
- Syed , I.Z. , Mukherjee , A. , and Nsaber , J. Numerical Simulation of Autoignition of Gasoline-Ethanol/Air Mixtures under Different Conditions of Pressure, Temperature, Dilution, and Equivalence Ratio SAE Technical Paper 2011-01-0341 2011 10.4271/2011-01-0341
- Blomberg , C.K. , Mitakos , D. , Bardi , M. , Boulouchos , K. et al. Extension of the Phenomenological 3-Arrhenius Auto-Ignition Model for Six Surrogate Automotive Fuels SAE Int. J. Engines 9 3 1544 1558 2016 10.4271/2016-01-0755
- DelVescovo , D. , Kokjohn , S. , and Reitz , R. The Development of an Ignition Delay Correlation for PRF Fuel Blends from PRF0 (N-Heptane) to PRF100 (Iso-Octane) SAE Int. J. Engines 9 1 520 535 2016 10.4271/2016-01-0551
- Khaled , F. , Badra , J. , and Farooq , A. Ignition Delay Time Correlation of Fuel Blends Based on Livengood-Wu Description Fuel 209 776 786 2017 10.1016/j.fuel.2017.07.095
- Gauthier , B.M. , Davidson , D.F. , and Hanson , R.K. Shock Tube Determination of Ignition Delay Times in Full-Blend and Surrogate Fuel Mixtures Combust. Flame 139 4 300 311 2004 10.1016/j.combustflame.2004.08.015
- Shen , H.-P.S. , Vanderover , J. , and Oehlschlaeger , M.A. A Shock Tube Study of Iso-Octane Ignition at Elevated Pressures: The Influence of Diluent Gases Combust. Flame 155 4 739 755 2008 10.1016/j.combustflame.2008.06.001
- Cancino , L.R. , Fikri , M. , Oliveira , A.A.M. , and Schulz , C. Ignition Delay Times of Ethanol-Containing Multi-Component Gasoline Surrogates: Shock-Tube Experiments and Detailed Modeling Fuel 90 3 1238 1244 2011 10.1016/j.fuel.2010.11.003
- Hartmann , M. , Gushterova , I. , Fikri , M. , Schulz , C. et al. Auto-Ignition of Toluene-Doped N-Heptane and Iso-Octane/Air Mixtures: High-Pressure Shock-Tube Experiments and Kinetics Modeling Combust. Flame 158 1 172 178 2011 10.1016/j.combustflame.2010.08.005
- Benson , G. , Fletcher , E.A. , Murphy , T.E. , and Scherrer , H.C. Knock (Detonation) Control by Engine Combustion Chamber Shape SAE Technical Paper 830509 1983 10.4271/830509
- Burgdorf , K. and Denbratt , I. Comparison of Cylinder Pressure Based Knock Detection Methods SAE Technical Paper 972932 1997 10.4271/972932
- Cavina , N. , Corti , E. , Minelli , G. , Moro , D. et al. Knock Indexes Normalization Methodologies SAE Technical Paper 2006-09-14 2006 10.4271/2006-01-2998
- Kalghatgi , G. , Algunaibet , I. , and Morganti , K. On Knock Intensity and Superknock in SI Engines SAE Int. J. Engines 10 3 1051 1063 2017 10.4271/2017-01-0689
- Brunt , M.F.J. , Pond , C.R. , and Biundo , J. Gasoline Engine Knock Analysis Using Cylinder Pressure Data SAE Technical Paper 980896 1998 10.4271/980896
- Ando , H. , Takemura , J. , and Koujina , E. A Knock Anticipating Strategy Basing on the Real-Time Combustion Mode Analysis SAE Technical Paper 890882 1989 10.4271/890882
- Livengood , J. C. and Wu , P. C. Correlation of Autoignition Phenomena in Internal Combustion Engines and Rapid Compression Machines Proceedings of Fifth International Symposium on Combustion 347 356 1955
- Chaos , M. , Zhao , Z. , Kazakov , A. , Gokulkrishnan , P. et al. A PRF+Toluene Surrogate Fuel Model for Simulating Gasoline Kinetics 5th U.S. Combustion Meeting 2007
- Kalghatgi , G. , Babiker , H. , and Badra , J. A Simple Method to Predict Knock Using Toluene, N-Heptane and Iso-Octane Blends (TPRF) as Gasoline Surrogates SAE Int. J. Engines 8 2 505 519 2015 10.4271/2015-01-0757
- Wang , Z. , Liu , H. , and Reitz , R.D. Knocking Combustion in Spark-Ignition Engines Prog. Energy Combust. Sci. 61 Supplement C 78 112 2017 10.1016/j.pecs.2017.03.004