This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Numerical Study of Twist Spring-back Control with an Unbalanced Post-stretching Approach for Advanced High Strength Steel
Technical Paper
2018-01-0806
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Twist spring-back would interfere with stamping or assembling procedures for advanced high strength steel. A “homeopathic” resolution for controlling the twist spring-back is proposed using unbalanced post-stretching configuration. Finite element forming simulation is applied to evaluate and compare the performance for each set of unbalanced post-stretching setup. The post-stretching is effectuated by stake bead application. The beads are separated into multiple independent segments, the height and radii of which can be adjusted individually and asymmetrically. Simulation results indicate that the twist spring-back can be effectively controlled by reducing the post-stretching proximate to the asymmetric part area. Its mechanism is qualitatively revealed by stress analyses, that an additional but acceptable cross-sectional spring-back re-balances the sprung asymmetrical geometry to counter the twist effect. It can be futile if the overall level of post-stretching exceeds the effective controlling limit.
Recommended Content
Authors
Topic
Citation
Jia, Y., Pu, C., Zhu, F., Zhou, D. et al., "Numerical Study of Twist Spring-back Control with an Unbalanced Post-stretching Approach for Advanced High Strength Steel," SAE Technical Paper 2018-01-0806, 2018, https://doi.org/10.4271/2018-01-0806.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
[Unnamed Dataset 1] |
Also In
References
- Li, H., Sun, G., Li, G., Gong, Z. et al., “On Twist Springback in Advanced High-Strength Steels,” Materials and Design 32:3272-3279, 2011, doi:10.1016/j.matdes.2011.02.035.
- Dezelak, M., Stepisnik, A., Pahole, I., and Ficko, M., “Evaluation of Twist Springback Prediction after an AHSS Forming Process,” International Journal Simulation Model 13:171-182, 2014, doi:10.2507/IJSIMM13(2)4.261.
- Xue, X., Liao, J., Vincze, G., Sousa, J. et al., “Modelling and Sensitivity Analysis of Twist Springback in Deep Drawing of Dual-Phase Steel,” Materials and Design 90:204-217, 2016, doi:10.1016/j.matdes.2015.10.127.
- Takamura, M., Sakata, M., Fukui, A., Hama, T. et al., “Investigation of Twist in Curved Hat Channel Products by Elastic-Plastic Finite Element Analysis,” International Journal of Material Forming 3:131-134, 2010, doi:10.1007/s12289-010-0724-1.
- Pham, C.H., Thuillier, S., and Manach, P.Y., “Twisting Analysis of Ultra-Thin Metallic Sheets,” Journal of Materials Processing Technology 214:844-855, 2014, doi:10.1016/j.jmatprotec.2013.12.006.
- Geka, T., Asakura, M., Kiso, T., Sugiyama, T. et al., “Reduction of Springback in Hat Channel with High-Strength Steel Sheet by Stroke Returning Deep Drawing,” Key Engineering Materials 554-557:1320-1330, 2013, doi:10.4028/www.scientific.net/KEM.554-557.1320.
- Jia, Y. and Bai, Y., “Ductile Fracture Prediction for Metal Sheets Using all-Strain-Based Anisotropic eMMC Model,” International Journal of Mechanical Sciences 115-116:516-531, 2016, doi:10.1016/j.ijmecsci.2016.07.022.
- Pu, C. and Gao, Y., “Crystal Plasticity Analysis of Stress Partitioning Mechanisms and their Microstructural Dependence in Advanced Steels,” Journal of Applied Mechanics 82:31003, 2015, doi:10.1115/1.4029552.
- Pu, C., Gao, Y., Wang, Y., and Sham, T.-L., “Diffusion-Coupled Cohesive Interface Simulations of Stress Corrosion Intergranular Cracking in Polycrystalline Materials,” Acta Materialia 136:21-31, 2017, doi:10.1016/j.actamat.2017.06.058.
- Sun, Z., Song, G., Sisneros, T.A., Clausen, B. et al., “Load Partitioning between the Bcc-Iron Matrix and NiAl-Type Precipitates in a Ferritic Alloy on Multiple Length Scales,” Scientific Reports 6(October 2015):1-9, 2016, doi:10.1038/srep23137.
- Jia, Y. and Bai, Y., “Experimental Study on the Mechanical Properties of AZ31B-H24 Magnesium Alloy Sheets under Various Loading Conditions,” International Journal of Fracture 197(1):25-48, 2016, doi:10.1007/s10704-015-0057-7.
- Jia, Y., Qiao, Y., Pan, H., Chu, E., and Bai, Y., “A Comprehensive Plasticity and Fracture Model for Metal Sheets under Multi-axial Stress and Non-Linear Strain Path,” SAE Inernationalt Journal Engines 10(2):2017-01-0315), 2017, doi:10.4271/2017-01-0315.
- Banu, M., Takamura, M., Hama, T., Naidim, O. et al., “Simulation of Springback and Wrinkling in Stamping of a Dual Phase Steel Rail-Shaped Part,” Journal of Materials Processing Technology 173:178-184, 2006, doi:10.1016/j.jmatprotec.2005.11.023.
- Chen, P. and Koç, M., “Simulation of Springback Variation in Forming of Advanced High Strength Steels,” Journal of Materials Processing Technology 190:189-198, 2007, doi:10.1016/j.jmatprotec.2007.02.046.
- Lee, M.-G., Kim, D., Kim, C., Wenner, M.L., and Chung, K., “Spring-Back Evaluation of Automotive Sheets Based on Isotropic-Kinematic Hardening Laws and Non-quadratic Anisotropic Yield Functions, Part III: Applications,” International Journal of Plasticity 21:915-953, 2005, doi:10.1016/j.ijplas.2004.05.014.
- Ishiwatari, A., Kano, H., Hiramoto, J., and Inazumi, T., “Improvement on CAE Model for Accurate Torsional Springback Prediction in High Strength Steel Part Forming,” Key Engineering Materials 504-506:437-442, 2012, doi:10.4028/www.scientific.net/KEM.504-506.437.
- Wagoner, R.H., Lim, H., and Lee, M.G., “Advanced Issues in Springback,” International Journal of Plasticity 45:3-20, 2013, doi:10.1016/j.ijplas.2012.08.006.
- Ayres, R.A., “SHAPESET: A Process to Reduce Sidewall Curl Springback in High-Strength Steel Rails,” Journal of Applied Metalworking 3:127-134, 1984, doi:10.1007/BF02833691.
- Zhou, D., Du, C., Hsiung, C., Schmid, K., Ren, F., Liasi, E., 2016. “UHSS Springback Reduction with Post-Stretch”, in: The IDDRG 2016 Conference Proceedings. (Linz, Austria).
- Huang, M., “Springback Control For DP590 S-Rail : Design & Application Better formability More Springback,” . In: Great Designs in Steel. (2007).
- Panthi, S.K., Ramakrishnan, N., Pathak, K.K., and Chouhan, J.S., “An Analysis of Springback in Sheet Metal Bending Using Finite Element Method (FEM),” Journal of Materials Processing Technology 186:120-124, 2007, doi:10.1016/j.jmatprotec.2006.12.026.