This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
High Throughput Vehicle Test for Spatiotemporal Emissions Evaluation
Technical Paper
2018-01-0642
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
The conventional evaluation of automotive catalysts has been carried out based on end-pipe measurement whereby the gas at the tailpipe of an automobile or the outlet of the bench reactor is monitored by using various analytical techniques such as Fourier-transform infrared spectroscopy (FTIR), mass spectrometry (MS), and gas chromatography (GC). However, this approach only provides overall gas concentrations at the exit flow of a monolith catalyst. Thereby, there is a deficiency of information on intra-catalyst chemistry. To obtain deeper insights on the design of an automotive catalyst, an emission breakdown analysis is critical. In this way, a comprehensive understanding of continuous processes along the catalyst length can be achieved. Here, we introduce the High Throughput Vehicle Test (HTVT), which is an analysis technology method for simultaneous emission observations at different catalyst positions in the vehicle. The core samples with different lengths were embedded in the original monolith catalyst for HTVT. Moreover, the gas concentrations along the length of the catalyst were measured by FTIR and gas analyzers. We then assessed the spatiotemporal distribution of reactions along two NOx trap bricks at the underflow catalytic converter (UCC) position of a gasoline vehicle during the FTP-75 (Federal Test Procedure) cycle. The results of the feasibility test suggest that HTVT can be utilized with temperature reliability and spatially resolved emissions within a ±12% error range. This study includes the HTVT results on the position impact of NOx storage component (NSC) and the Platinum Group Metals (PGM) ratio at the front and rear bricks of NOx trap performance. HTVT results exhibited that NOx conversions mainly occurred in the first quarter of the monolith catalyst, followed by CO conversions at the middle of catalyst length. The accountable HC conversions were detected in the last quarter of the catalyst axis. Both of the NSC zoned catalysts exhibited the enhancement of NOx conversion compared to the reference. The PGM front zoned catalyst represented the highest HC conversion, and the PGM rear catalyst showed an identical HC conversion to the reference at the outlet of the catalyst. These key findings demonstrate the feasibility of HTVT as a technology for spatiotemporal emissions evaluation. Furthermore, the new insights from the intra-catalyst reaction at zoned catalysts could facilitate the development of spatially coupled NOx trap catalysts.
Authors
Citation
Kim, M., Park, J., Lee, B., Kang, H. et al., "High Throughput Vehicle Test for Spatiotemporal Emissions Evaluation," SAE Technical Paper 2018-01-0642, 2018, https://doi.org/10.4271/2018-01-0642.Also In
References
- Moran , K. , Touitou , J. , Choi , J.-S. , Coney , C. et al. Evolution and Enabling Capabilities of Spatially Resolved Techniques for the Characterization of Heterogeneously Catalyzed Reactions ACS Catalysis 6 1356 1381 2016 10.1021/acscatal.5b02602
- Partridge , W.P. and Choi , J.S. NH3 Formation and Utilization in Regeneration of Pt/Ba/Al2O3 NOx Storage-Reduction Catalyst with H2 Applied Catalysis B: Environmental 91 144 151 2009 10.1016/j.apcatb.2009.05.017
- Auvray , X. , Partridge , W.P. , Choi , J.-S. , Pihl , J.A. et al. Local Ammonia Storage and Ammonia Inhibition in a Monolithic Copper-Beta Zeolite SCR Catalyst Applied Catalysis B: Environmental 126 144 152 2012 10.1016/j.apcatb.2012.07.019
- Cunningham , M. , Kim , M.-Y. , Lakkireddy , V. , and Partridge , W. Axial NO2 utilization measurements within a partial flow filter during passive regeneration SAE Technical Paper 2017-01-0988 2017 10.4271/2017-01-0988
- Xue , Wen-Mei , Siani , A. , Hochmuth , J.K. , Kinne , M. , and Kielbassa , S 2015
- Murata , Y. , Morita , T. , Wada , K. , and Ohno , H. NOx Trap Three-Way Catalyst (N-TWC) Concept: TWC with NOx Adsorption Properties at Low Temperatures for Cold-Start Emission Control SAE Technical Paper 2015-01-1002 2015 10.4271/2015-01-1002
- Iwakuni , H. , Takami , A. , and Komatsu , K. Development of Lean NOx Catalyst for Lean Bum Gasoline Engine Science and Technology in Catalysis 121 251 1999 10.1016/S0167-2991(99)80075-5
- Choi , M.Y. A new technology for improving fuel economy 16th Hyundai Kia International Powertrain Conference Namyang, Korea Oct 25th-26th 2016
- Liu , Y. , Zheng , Y. , Harold , M.P. , and Luss , D. Lean NOx Reduction on LNT-SCR Dual-Layer Catalysts by H2 and CO Applied Catalysis B: Environmental 132-133 293 303 2013 10.1016/j.apcatb.2012.10.034
- Epling , W.S. , Campbell , L.E. , Yezerets , A. , Currier , N.W. , and Parks , J.E. Overview of the Fundamental Reactions and Degradation Mechanisms of NOx Storage/Reduction Catalysts Catalysis Reviews 46 2 163 245 2004 10.1081/CR-200031932
- Maeda , N. , Urakawa , A. , and Baiker , A. Support Effects and Chemical Gradients along the Catalyst Bed in NOx Storage-Reduction Studied by Space- and Time-Resolved In Situ DRIFTS Journal of Physical Chemistry C 113 38 16724 16735 2009 10.1021/jp902901h