This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Coherent Treatment of Time in the Development of ADAS/AD Systems: Design Approach and Demonstration
Technical Paper
2018-01-0592
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
The application of digital control in the automotive domain clearly follows an evolution with increasing complexity of both covered functions and their interaction. Advanced Driver Assistance Systems (ADAS) and Automated Driving Functions (AD) comprise modular interacting software components that typically build upon a layered architecture. As these components are generally developed by different teams, using different tools for different functional purposes and building upon different models of computation, an integration of all components guaranteeing the satisfaction of all requirements calls for coherent handling of timing properties.
We propose an approach addressing this major challenge, which consists of four design paradigms. A compositional semantic framework - based on a notion of components, their interfaces and their interaction - provides the common ground. Equipped with well-defined semantics allowing to express specifications in terms of contracts, and together with also well-defined operations (such as decomposition and refinement), the framework gives means to all typical design steps in the considered application domain. The second paradigm consists of a carefully selected set of contract specification patterns covering a multitude of relevant timing phenomena. The third paradigm concerns the embedding of different models of computation into the framework, lifting them into a common semantic domain. The fourth design paradigm provides for integrating models of computation by means of interaction components. All those paradigms are well-known in academia or industrial practice. Although we have extended them where needed in order to fit the particular needs of ADAS/AD design, it is foremost their interplay which is the novelty of our approach.
The application of the approach is exemplified by an industrial-motivated case study of an emergency stop system. In the course of this demonstration we show that coherent treatment of time and timing effects in ADAS/AD design is indeed possible and can be integrated in typical industrial processes.
Recommended Content
Technical Paper | An Integrated Test Suite for Verification and Validation of Advanced Driver Assistance Systems |
Technical Paper | Implementing AUTOSAR Atomic Software Components Using UML/SYSML in C |
Authors
Citation
Ehmen, G., Grüttner, K., Koopmann, B., Poppen, F. et al., "Coherent Treatment of Time in the Development of ADAS/AD Systems: Design Approach and Demonstration," SAE Technical Paper 2018-01-0592, 2018, https://doi.org/10.4271/2018-01-0592.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 | ||
Unnamed Dataset 5 | ||
Unnamed Dataset 6 | ||
Unnamed Dataset 7 |
Also In
References
- AUTOSAR GbR 2015
- AUTOSAR GbR 2015
- I. Bao , P. Battram , A. Enkelmann , A. Gabel , J. Heyen , T. Koepke , C. Läsche , and S. Sieverding 2010
- Benveniste , A. , Caillaud , B. , Ferrari , A. , Mangeruca , L. et al. Multiple Viewpoint Contract-Based Specification and Design, pages Berlin, Heidelberg Springer 2008 200 225
- A. Benveniste , B. Caillaud , D. Nickovic , R. Passerone , J. Raclet , P. Reinkemeier , A. Sangiovanni-Vincentelli , W. Damm , T. Henzinger , and K. Larsen Contracts for Systems Design: Methodology and Application Cases. Research Report RR-8760 Inria Rennes Bretagne Atlantique; INRIA 2015
- A. Benveniste , B. Caillaud , D. Nickovic , R. Passerone , J. Raclet , P. Reinkemeier , A. Sangiovanni-Vincentelli , W. Damm , T. Henzinger , and K. Larsen Contracts for Systems Design: Theory. Research Report RR-8759 Inria Rennes Bretagne Atlantique; INRIA 2015
- D. Broman , L. Greenberg , E. Lee , M. Masin , S. Tripakis , and M. Wetter Requirements for Hybrid Cosimulation Standards Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, HSCC’15 179 188 New York, USA 2015
- E. Böde , M. Büker , W. Damm , G. Ehmen , M. Fränzle , S. Gerwinn , T. Goodfellow , K. Grüttner , B. Josko , B. Koopmann , T. Peikenkamp , F. Poppen , P. Reinkemeier , M. Siegel , and I. Stierand 2017
- M. Büker , W. Damm , G. Ehmen , S. Henkler , D. Janssen , I. Stierand , and E. Thaden From Specification Models to Distributed Embedded Applications: A Holistic User-Guided Approach SAE Int. J. of Passeng. Cars - Electronic and Electrical Sys. 6 1 194 212 2013 10.4271/2013-01-0432
- A. Cimatti and S. Tonetta Contracts-Refinement Proof System for Component-Based Embedded Systems Science of Computer Programming 97 3 333 348 2015
- A. Davare , D. Densmore , T. Meyerowitz , A. Pinto , A. Sangiovanni-Vincentelli , G. Yang , H. Zeng , and Q. Zhu A Next-Generation Design Framework for Platform-based Design Proceedings of Conference on Using Hardware Design and Verification Languages (DVCon’07) 2007
- Di Natale , M. , Guo , L. , Zeng , H. , and Sangiovanni-Vincentelli , A. Synthesis of Multitask Implementations of Simulink Models with Minimum Delays IEEE Transactions on Industrial Informatics 2010
- International Organization for Standardization 1993
- International Organization for Standardization 2002
- International Organization for Standardization 2011
- International Organization for Standardization 2014
- Forschungsgesellschaft für Straßen- und Verkehrswesen Arbeitsgruppe Straßenentwurf Richtlinien für die Anlage von Autobahnen 2008
- T. Gezgin , R. Weber , and M. Oertel Multi-Aspect Virtual Integration Approach for Real-Time and Safety Properties International Workshop on Design and Implementation of Formal Tools and Systems (DIFTS’14). IEEE Computer Society 2014
- Henzinger , T. , Horowitz , B. , and Kirsch , C. Giotto: A Time-Triggered Language for Embedded Programming Berlin Heidelberg Springer 2001 166 184
- Jantsch , A. Models of Embedded Computation Embedded Systems Handbook CRC Press 2005
- N. Kämpchen , P. Waldmann , F. Homm , and M. Ardelt Umfelderfassung fürr Den Nothalteassistenten - Ein System Zum Automatischen Anhalten Bei plötzlich Reduzierter Fahrfähigkeit Des Fahrers 2010
- E. Lee and A. Sangiovanni-Vincentelli A Framework for Comparing Models of Computation IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 17 12 1998
- TIMMO Partners TADL: Timing Augmented Description Language Version 2. Timmo Deliverable d6 TIMMO Project 2009
- TIMMO-2-USE Partners Language Syntax, Semantics, Metamodel V2 TIMMO-2-USE Project 2012
- J. Paul and D. Thomas Models of Computation for Systems-on-Chips Ahmed A. Jerraya and Wayne Wolf Multiprocessor Systems-on-Chip 15 Morgan Kaufman Publishers 2004
- Savage , J. Models of Computation: Exploring the Power of Computing Addison Wesley 1998
- http://www.accellera.org
- Taylor , R. Models of Computation and Formal Languages New York Oxford University Press 1998
- Winner , H. , Hakuli , S. , Lotz , F. , and Singer , C. Handbuch Fahrerassistenzsysteme 3rd Vieweg, Wiesbaden ATZ/MTZ-Fachbuch. Springer 2015
- Würzburger Institut für Verkehrswissenschaften GmbH 2009