This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Benchmarking a 2016 Honda Civic 1.5-Liter L15B7 Turbocharged Engine and Evaluating the Future Efficiency Potential of Turbocharged Engines

Published April 3, 2018 by SAE International in United States
Benchmarking a 2016 Honda Civic 1.5-Liter L15B7 Turbocharged Engine and Evaluating the Future Efficiency Potential of Turbocharged Engines
Sector:
Citation: Stuhldreher, M., Kargul, J., Barba, D., McDonald, J. et al., "Benchmarking a 2016 Honda Civic 1.5-Liter L15B7 Turbocharged Engine and Evaluating the Future Efficiency Potential of Turbocharged Engines," SAE Int. J. Engines 11(6):1273-1305, 2018, https://doi.org/10.4271/2018-01-0319.
Language: English

References

  1. Lee, B., Lee, S., Cherry, J., Neam, A. et al. , “Development of Advanced Light-Duty Powertrain and Hybrid Analysis Tool,” SAE Technical Paper 2013-01-0808 , 2013, doi:10.4271/2013-01-0808.
  2. Kargul, J., Moskalik, A., Barba, D., Newman, K. et al. , “Estimating GHG Reduction from Combinations of Current Best-Available and Future Powertrain and Vehicle Technologies for a Midsized Car Using EPA’s ALPHA Model,” SAE Technical Paper 2016-01-0910 , 2016, doi:10.4271/2016-01-0910.
  3. Niizato, T., Yasui, Y., Urata, Y., Wada, Y. et al. , “Honda’s New Turbo-GDI Engine Series for Global Application,” 37th International Vienna Motor Symposium, 2016.
  4. Wada, Y., Nakano, K., Mochizuki, K., and Hata, R. , “Development of a New 1.5L I4 Turbocharged Gasoline Direct Injection Engine,” SAE Technical Paper 2016-01-1020, 2016, doi:10:4271/2016-01-1020.
  5. U.S Code of Federal Regulations, Title 40, Part 1065, §1065.130, Jan. 1, 2018.
  6. Stuhldreher, M., Schenk, C., Brakora, J., Hawkins, D. et al. , “Downsized Boosted Engine Benchmarking and Results,” SAE Technical Paper 2015-01-1266 , 2015, doi:10.4271/2015-01-1266.
  7. Ellies, B., Schenk, C., and Dekraker, P. , “Benchmarking and Hardware-In-The-Loop Operation of a 2014 MAZDA SkyActiv 2.0 L 13:1 Compression Ratio Engine,” SAE Technical Paper 2016-01-1007 , 2016, doi:10.4271/2016-01-1007.
  8. Stuhldreher, M. , “Fuel Efficiency Mapping of a 2014 6-Cylinder GM EcoTec 4.3 L Engine with Cylinder Deactivation,” SAE Technical Paper 2016-01-0662 , 2016, doi:10.4271/2016-01-0662.
  9. U.S. EPA , “2013 Chevrolet Malibu 2.5 L Engine Mapping Test Package,” Docket number EPA-HQ-OAR-2015-0827-0532, Also available at https://www.epa.gov/sites/production/files/2016-10/2013-chevrolet-malibu-2.5l-engine-mapping-test-package-06-20-16.zip, last accessed on Jan. 3, 2018.
  10. U.S. EPA , “2014 Mazda 2.0 L Skyactiv 13-1 Tier 2 Fuel-Engine Mapping Core Test Package,” Docket number EPA-HQ-OAR-2015-0827-0533, Also available at https://www.epa.gov/sites/production/files/2016-10/2014-mazda-2.0l-skyactiv-13-1-tier2-fuel-engine-mapping-core-test-package-06-28-16.zip, last accessed Jan. 3, 2018.
  11. U.S. EPA , “2015 Ford F150 2.7 L Tier 2 Fuel-Engine Mapping Core Test Package,” Docket number EPA-HQ-OAR-2015-0827-0534, Also available at https://www.epa.gov/sites/production/files/2016-10/2015-ford-f150-2.7l-tier2-fuel-engine-mapping-core-test-package-06-21-16.zip, last accessed Jan. 3, 2018.
  12. Furukawa, T., Okada, N., Honda, I., and Akiba, A. , “Automobile Efficiency Improvements Using Electrochemical Capacitor Energy Storage,” Proceedings of Electrical Vehicle Symposium 27, 2013, doi:10.1109/EVS.2013.6914977.
  13. Dekraker, P. , “Constructing Engine Maps for Full Vehicle Simulation Modeling,” SAE Technical Paper 2018-01-1412 , 2018, doi:10.4271/2018-01-1412.
  14. U.S. EPA , “Proposed Determination on the Appropriateness of the Model Year 2022-2025 Light-Duty Vehicle Greenhouse Gas Emissions Standards under the Midterm Evaluation: Technical Support Document. §2.3.4.1.9.1-Effectiveness Data Used and Basis for Assumptions,” Document Number EPA-420-R-16-021, Nov. 2016.
  15. Dekraker, P., Kargul, J., Moskalik, A., Newman, K. et al. , “Fleet-Level Modeling of Real World Factors Influencing Greenhouse Gas Emission Simulation in ALPHA,” SAE Int. J. Fuels Lubr. 10(1):217-235, 2017, doi:10.4271/2017-01-0899.
  16. Ricardo , “Computer Simulation of Light-Duty Vehicle Technologies for Greenhouse Gas Emission Reduction in the 2020-2025 Timeframe,” EPA-420-R-11-020, 2011.
  17. Hirose, I. , “Mazda 2.5 L SKYACTIV-G Engine with New Boosting Technology,” 37th International Vienna Motor Symposium, 2016.
  18. Wurms, R., Budack, R., Grigo, M., Mendl, G. et al. , “The New Audi 2.0 L Engine with Innovative Rightsizing - A Further Milestone in the TFSI Technology,” 36th Vienna Motor Symposium, 2015.
  19. Eichler, F., Demmelbauer-Ebner, W., Theobald, J., Stiebels, B. et al. , “The New EA211 TSI® Evo from Volkswagen,” 37th Vienna Motor Symposium, 2016.
  20. Königstedt, J., Bonn, G., Brinkmann, C., Fröhlich, G. et al. , “The New 3.0l V6 TFSI Engine from Audi,” 37th Vienna Motor Symposium, 2016.
  21. Kiga, S., Moteki, K., and Kojima, S. , “The World’s First Production Variable Compression Ratio Engine-The New Nissan VC-T (Variable Compression-Turbo) Engine,” 38th Vienna Motor Symposium, 2017.
  22. U.S. EPA , “Regulatory Impact Analysis: Final Rulemaking for 2017-2025 Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards,” Document Number EPA-420-R-12-016, Aug. 2012.
  23. U.S. EPA , “Proposed Determination on the Appropriateness of the Model Year 2022-2025 Light-Duty Vehicle Greenhouse Gas Emissions Standards under the Midterm Evaluation: Technical Support Document,” Document Number EPA-420-R-16-021, Nov. 2016.
  24. U.S. Environmental Protection Agency , “Draft Technical Assessment Report: Midterm Evaluation of Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards for Model Years 2022-2025,” Document Number EPA-420-D-16-900, July 2016.
  25. Cruff, L., Kaiser, M., Krause, S., Harris, R. et al. , “EBDI® - Application of a Fully Flexible High BMEP Downsized Spark Ignited Engine,” SAE Technical Paper 2010-01-0587, 2010, doi:10.4271/2010-01-0587.
  26. Serrano, J., Routledge, G., Lo, N., Shost, M. et al. , “Methods of Evaluating and Mitigating NVH when Operating an Engine in Dynamic Skip Fire,” SAE Int. J. Engines 7(3):1489-1501, 2014, doi:10.4271/2014-01-1675.
  27. Eisazadeh-Far, K. and Younkins, M. , “Fuel Economy Gains through Dynamic-Skip-Fire in Spark Ignition Engines,” SAE Technical Paper 2016-01-0672 , 2016, doi:10.4271/2016-01-0672.
  28. Bohac, S. , “Benchmarking and Characterization of Two Cylinder Deactivation Systems - Full Continuous and Partial Discrete,” SAE Oral-Only Presentation, SAE World Congress, 2018.
  29. Younkins, M., Tripathi, A., Serrano, J., Fuerst, J. et al. , “Dynamic Skip Fire: The Ultimate Cylinder Deactivation Strategy,” 38th International Vienna Motor Symposium, 2017.
  30. Fuschetto, J., Eisazadeh-Far, K., Younkins, M., Carlson, S. et al. , “Dynamic Skip Fire in Four-Cylinder Spark Ignition Engines: Fuel Economy Gains and Pollutant Emissions Reductions,” SAE Oral-Only Presentation, SAE World Congress, 2017.

Cited By