This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Large-Eddy Simulations of Spray Variability Effects on Flow Variability in a Direct-Injection Spark-Ignition Engine Under Non-Combusting Operating Conditions
Technical Paper
2018-01-0196
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Large-eddy Simulations (LES) have been carried out to investigate spray variability and its effect on cycle-to-cycle flow variability in a direct-injection spark-ignition (DISI) engine under non-reacting conditions. Initial simulations were performed of an injector in a constant volume spray chamber to validate the simulation spray set-up. Comparisons showed good agreement in global spray measures such as the penetration. Local mixing data and shot-to-shot variability were also compared using Rayleigh-scattering images and probability contours. The simulations were found to reasonably match the local mixing data and shot-to-shot variability using a random-seed perturbation methodology. After validation, the same spray set-up with only minor changes was used to simulate the same injector in an optically accessible DISI engine. Particle Image Velocimetry (PIV) measurements were used to quantify the flow velocity in a horizontal plane intersecting the spark plug gap. The engine was operated in a skip-fired operating mode and comparisons focused on cycles that included fuel injection, but no spark event and therefore no combustion. 105 total LES engine cycles were simulated using a parallel cycle simulation approach and 3 different perturbation methods in an attempt to isolate the effects of shot-to-shot spray variability and the initial turbulent flow field as well as their interaction effects on overall engine CCVs. The experimental mean and standard deviations were reasonably well matched by the simulations, though quantitative comparisons near the injection event during the intake stroke were difficult due to the high uncertainty in the PIV measurements at these crank angles. The 3 simulation perturbation methods resulted in very similar results, though further analysis found the current parallel cycle approach may be limiting the ability of the simulations to isolate the spray and flow effects.
Recommended Content
Authors
Topic
Citation
Van Dam, N., Sjöberg, M., and Som, S., "Large-Eddy Simulations of Spray Variability Effects on Flow Variability in a Direct-Injection Spark-Ignition Engine Under Non-Combusting Operating Conditions," SAE Technical Paper 2018-01-0196, 2018, https://doi.org/10.4271/2018-01-0196.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
[Unnamed Dataset 1] | ||
[Unnamed Dataset 2] | ||
[Unnamed Dataset 3] | ||
[Unnamed Dataset 4] | ||
[Unnamed Dataset 5] | ||
[Unnamed Dataset 6] | ||
[Unnamed Dataset 7] | ||
[Unnamed Dataset 8] |
Also In
References
- Zhao, F., Lai, M.-C., and Harrington, D.L. , “Automotive Spark-Ignited Direct-Injection Gasoline Engines,” Progress in Energy and Combustion Science 25(5):437-562, 1999, doi:10.1016/S0360-1285(99)00004-0.
- Eckerle, W. and Rutland, C. , “A Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE),” (Arlington, VA, 2011).
- Richard, S., Colin, O., Vermorel, O., Benkenida, A. et al. , “Towards Large Eddy Simulation of Combustion in Spark Ignition Engines,” Proceedings of the Combustion Institute 31(2):3059-3066, 2007, doi:10.1016/j.proci.2006.07.086.
- Vermorel, O., Richard, S., Colin, O., Angelberger, C. et al. , “Multi-Cycle LES Simulations of Flow and Combustion in a PFI SI 4-Valve Production Engine,” SAE Technical Paper 2007-01-0151 , 2007, doi:10.4271/2007-01-0151.
- Vermorel, O., Richard, S., Colin, O., Angelberger, C. et al. , “Towards the Understanding of Cyclic Variability in a Spark Ignited Engine Using Multi-cycle LES,” Combustion and Flame 156(8):1525-1541, 2009, doi:10.1016/j.combustflame.2009.04.007.
- Enaux, B., Granet, V., Vermorel, O., Lacour, C. et al. , “Large Eddy Simulation of a Motored Single-Cylinder Piston Engine: Numerical Strategies and Validation,” Flow, Turbulence and Combustion 86(2):153-177, 2011, doi:10.1007/s10494-010-9299-7.
- Enaux, B., Granet, V., Vermorel, O., Lacour, C. et al. , “LES Study of Cycle-to-Cycle Variations in a Spark Ignition Engine,” Proceedings of the Combustion Institute 33(2):3115-3122, 2011, doi:10.1016/j.proci.2010.07.038.
- Granet, V., Vermorel, O., Lacour, C., Enaux, B. et al. , “Large-Eddy Simulation and Experimental Study of Cycle-to-Cycle Variations of Stable and Unstable Operating Points in a Spark Ignition Engine,” Combustion and Flame 159(4):1562-1575, 2012, doi:10.1016/j.combustflame.2011.11.018.
- Pera, C. and Angelberger, C. , “Large Eddy Simulation of a Motored Single-Cylinder Engine Using System Simulation to Define Boundary Conditions: Methodology and Validation,” SAE International Journal of Engines 4(1):948-963, 2011, doi:10.4271/2011-01-0834.
- Sick, V., Reuss, D., Abraham, P., Alharbi, A. et al. , “A Common Engine Platform for Engine LES Development and Validation,” . In: Angelberger C. , editor. Les Rencontres Scientifiques d’IFP Energies Nouvelles: International Conference on LES for Internal Combustion Engine Flows (LES4ICE). (Rueil-Malmaison, IFP Energies Nouvelle, 2010).
- Abraham, P., Liu, K., Haworth, D., Reuss, D. et al. , “Evaluating Large-Eddy Simulation (LES) and High-Speed Particle Image Velocimetry (PIV) with Phase-Invariant Proper Orthogonal Decomposition (POD),” Oil & Gas Science and Technology - Revue d’IFP Energies Nouvelles 69(1):41-59, 2013, doi:10.2516/ogst/2013126.
- Liu, K. and Haworth, D.C. , “Development and Assessment of POD for Analysis of Turbulent Flow in Piston Engines,” SAE Technical Paper 2011-01-0830 , 2011, doi:10.4271/2011-01-0830.
- Liu, K., Haworth, D.C., Yang, X., and Gopalakrishnan, V. , “Large-Eddy Simulation of Motored Flow in a Two-Valve Piston Engine: POD Analysis and Cycle-to-Cycle Variations,” Flow, Turbulence and Combustion 91(2):373-403, 2013, doi:10.1007/s10494-013-9475-7.
- Kuo, T., Yang, X., Gopalakrishnan, V., and Chen, Z. , “Large Eddy Simulation (LES) for IC Engine Flows,” Oil & Gas Science and Technology - Revue d’IFP Energies Nouvelles 69(1):61-81, 2013, doi:10.2516/ogst/2013127.
- Yang, X., Gupta, S., Kuo, T.-W., and Gopalakrishnan, V. , “RANS and Large Eddy Simulation of Internal Combustion Engine Flows-A Comparative Study,” Journal of Engineering for Gas Turbines and Power 136(5):051507, 2014, doi:10.1115/1.4026165.
- Van Dam, N. and Rutland, C. , “Understanding In-Cylinder Flow Variability Using Large-Eddy Simulations,” Journal of Engineering for Gas Turbines and Power 138(10):102809, 2016, doi:10.1115/1.4033064.
- Banaeizadeh, A., Afshari, A., Schock, H., and Jaberi, F. , “Large Eddy Simulations of Turbulent Flows in IC Engines,” Proceedings of the ASME 2008 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2008, Brooklyn, New York, 2008.
- Banaeizadeh, A., Afshari, A., Schock, H., and Jaberi, F. , “Large-Eddy Simulations of Turbulent Flows in Internal Combustion Engines,” International Journal of Heat and Mass Transfer 60:781-796, 2013, doi:10.1016/j.ijheatmasstransfer.2012.12.065.
- Ameen, M.M., Yang, X., Kuo, T., Xue, Q., et al., “LES for Simulating the Gas Exchange Process in a Spark Ignition Engine,” ASME 2015 Internal Combustion Engine Division Fall Technical Conference, ASME, ISBN 978-0-7918-5728-1: V002T06A001, 2015, doi:10.1115/ICEF2015-1002.
- Koch, J., Schmitt, M., Wright, Y.M., Steurs, K. et al. , “LES Multi-Cycle Analysis of the Combustion Process in a Small SI Engine,” SAE International Journal of Engines 7(1):269-285, 2014, doi:10.4271/2014-01-1138.
- Montorfano, A., Piscaglia, F., Onorati, A., and Milano, P. , “A LES Study on the Evolution of Turbulent Structures in Moving Engine Geometries by an Open-Source CFD Code,” SAE Technical Paper 2014-01-1147 , 2014, doi:10.4271/2014-01-1147.
- Jupudi, R.S., Finney, C.E.A., Primus, R., Wijeyakulasuriya, S. et al. , “Application of High Performance Computing for Simulating Cycle-to-Cycle Variation in Dual-Fuel Combustion Engines,” SAE Technical Paper 2016-01-0798 , 2016, doi:10.4271/2016-01-0798.
- Qin, W., Xu, M., Yin, P., and Hung, D.L.S. , “Analysis of the Cycle-to-Cycle Variations of In-cylinder Vortex Structure and Vorticity using Phase-Invariant Proper Orthogonal Decomposition,” JSAE Technical Paper 20159033 , 2015.
- Janas, P., Wlokas, I., Böhm, B., and Kempf, A. , “On the Evolution of the Flow Field in a Spark Ignition Engine,” Flow, Turbulence and Combustion 98(1):237-264, 2017, doi:10.1007/s10494-016-9744-3.
- Ameen, M.M., Yang, X., Kuo, T.-W., and Som, S. , “Parallel Methodology to Capture Cyclic Variability in Motored Engines,” International Journal of Engine Research 18(4):366-377, 2017, doi:10.1177/1468087416662544.
- Chen, H., Hung, D.L.S., Xu, M., and Zhong, J. , “Analyzing the Cycle-To-Cycle Variations of Pulsing Spray Characteristics by Means of the Proper Orthogonal Decomposition,” Atomization and Sprays 23(7):623-641, 2013, doi:10.1615/AtomizSpr.2013007851.
- Van Dam, N. and Rutland, C. , “Uncertainty Quantification of Large-Eddy Spray Simulations,” Journal of Verification, Validation and Uncertainty Quantification 1(2):021006, 2016, doi:10.1115/1.4032196.
- Blessinger, M., Manin, J., Skeen, S.A., Meijer, M. et al. , “Quantitative Mixing Measurements and Stochastic Variability of a Vaporizing Gasoline Direct-Injection Spray,” International Journal of Engine Research 16(2):238-252, 2015, doi:10.1177/1468087414531971.
- Adomeit, P., Lang, O., Pischinger, S., Aymanns, R. et al. , “Analysis of Cyclic Fluctuations of Charge Motion and Mixture Formation in a DISI Engine in Stratified Operation,” SAE Technical Paper 2007-01-1412 , 2007, doi:10.4271/2007-01-1412.
- Goryntsev, D., Sadiki, A., and Janicka, J. , “Towards Large Eddy Simulation of Spray Combustion in Direct Injection Spark Ignition Engine,” SAE Technical Paper 2011-01-1884 , 2011, doi:10.4271/2011-01-1887.
- Goryntsev, D., Sadiki, A., and Janicka, J. , “Cycle-to-Cycle Variations Based Unsteady Effects on Spray Combustion in Internal Combustion Engines by Using LES,” SAE Technical Paper 2012-01-0399 , 2012, doi:10.4271/2012-01-0399.
- Fontanesi, S., Paltrinieri, S., D’Adamo, A., and Duranti, S. , “Investigation of Boundary Condition and Field Distribution Effects on the Cycle-to-Cycle Variability of a Turbocharged GDI Engine Using LES,” Oil & Gas Science and Technology - Revue d’IFP Energies Nouvelles 69(1):107-128, 2013, doi:10.2516/ogst/2013142.
- Fontanesi, S., Paltrinieri, S., and Cantore, G. , “LES Analysis of Cyclic Variability in a GDI Engine,” SAE Technical Paper 2014-01-1148 , 2014, doi:10.4271/2014-01-1148.
- Zeng, W., Sjöberg, M., and Reuss, D.L. , “Combined Effects of Flow/Spray Interactions and EGR on Combustion Variability for a Stratified DISI Engine,” Proceedings of the Combustion Institute 35(3):2907-2914, 2015, doi:10.1016/j.proci.2014.06.106.
- Sandia National Laboratories , “Engine Combustion Network,” http://www.sandia.gov/ecn/, accessed Oct. 2017.
- Zeng, W., Sjöberg, M., and Reuss, D.L. , “PIV Examination of Spray-Enhanced Swirl Flow for Combustion Stabilization in a Spray-Guided Stratified-Charge Direct-Injection Spark-Ignition Engine,” International Journal of Engine Research 16(3):306-322, 2015, doi:10.1177/1468087414564605.
- Richards, K., Senecal, P., and Pomraning, E. , “CONVERGE Manual - CONVERGE CFD 2.3,” (Madison, WI, 2016).
- Pomraning, E. and Rutland, C.J. , “Dynamic One-Equation Nonviscosity Large-Eddy Simulation Model,” AIAA Journal 40(4):689-701, 2002, doi:10.2514/2.1701.
- Amsden, A.A., O’Rourke, P.J., and Butler, T.D. , “KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays,” (LA-11560-MS, Los Alamos, NM, 1989).
- Beale, J.C. and Reitz, R.D. , “Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model,” Atomization and Sprays 9(6):623-650, 1999, doi:10.1615/AtomizSpr.v9.i6.40.
- Senecal, P.K., Richards, K.J., Pomraning, E., Yang, T. et al. , “A New Parallel Cut-Cell Cartesian CFD Code for Rapid Grid Generation Applied to In-Cylinder Diesel Engine Simulations,” SAE Technical Paper 2007-01-0159 , 2007, doi:10.4271/2007-01-0159.
- Frössling, N. , “Über die Verdunstung fallender Tropfen,” Gerlands Beiträge Zur Geophysik 52(1):170-216, 1938.
- Ranz, W.E. and Marshall, W.R. Jr. , “Evaporation from Drops,” Chemical Engineering Progress 148:141-146, 173-180, 1952.
- Faeth, G.M. , “Current Status of Droplet and Liquid Combustion,” Progress in Energy and Combustion Science 3(4):191-224, 1977, doi:10.1016/0360-1285(77)90012-0.
- Schmidt, D.P. and Rutland, C.J. , “A New Droplet Collision Algorithm,” Journal of Computational Physics 164(1):62-80, 2000, doi:10.1006/jcph.2000.6568.
- Liu, A.B., Mather, D., and Reitz, R.D. , “Modeling the Effects of Drop Drag and Breakup on Fuel Sprays,” SAE Technical Paper 930072 , 1993, doi:10.4271/930072.
- Van Dam, N. and Rutland, C. , “Adapting Diesel Large-Eddy Simulation Spray Models for Direct-Injection Spark-Ignition Applications,” International Journal of Engine Research 17(3):291-315, 2016, doi:10.1177/1468087415572034.
- Van Dam, N., Zeng, W., Sjöberg, M., and Som, S. , “Parallel Multi-cycle LES of an Optical Pent-roof DISI Engine under Motored Operating Conditions,” Proceedings of the ASME 2017 Internal Combustion Fall Technical Conference, ASME, Seattle, WA, 2017, doi:10.1115/ICEF2017-3603.
- Chen, Y., Wolk, B., Mehl, M., Cheng, W.K. et al. , “Development of a Reduced Chemical Mechanism Targeted for a 5-Component Gasoline Surrogate: A Case Study on the Heat Release Nature in a GCI Engine,” Combustion and Flame 178:268-276, 2017, doi:10.1016/j.combustflame.2016.12.018.
- Oefelein, J., Lacaze, G., Dahms, R., Ruiz, A. et al. , “Effects of Real-Fluid Thermodynamics on High-Pressure Fuel Injection Processes,” SAE International Journal of Engines 7(3):1125-1136, 2014, doi:10.4271/2014-01-1429.
- Gilling, L. , “TuGen: Synthetic Turbulence Generator, Manual and User’s Guide,” DCE Technical Reports No. 76, 2009.
- Van Dam, N., Som, S., Swantek, A.B., and Powell, C.F. , “The Effect of Grid Resolution on Predicted Spray Variability Using Multiple Large-Eddy Spray Simulations,” Proceedings of the ASME 2016 Internal Combustion Engine Fall Technical Conference, ASME, Greenville, SC, ISBN 978-0-7918-5050-3: V001T06A013, 2016, doi:10.1115/ICEF2016-9384.
- Van Dam, N., Som, S., Swantek, A.B., and Powell, C.F. , “The Effects of Parcel Count on Predictions of Spray Variability in Large-eddy Simulations of Diesel Fuel Sprays,” ILASS Americas, 28th Annual Conference on Liquid Atomization and Spray Systems, Dearborn, MI, 2016.