This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Thermal Modeling of an Automotive HVAC Unit Using a Coupled POD and Flow Resistance Network Approach
Technical Paper
2018-01-0068
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
In modern vehicle air conditioning concepts, the temperatures at the outlets of the Heating Ventilation and Air Conditioning (HVAC) unit are controlled using temperature sensors in combination with an Automatic Climate Control (ACC) system. A novel coupled Proper Orthogonal Decomposition (POD) and Flow Resistance Network (FRN) model approach is proposed to accurately predict the temperatures at the outlets of a HVAC unit for real-time model based control. The integral enthalpy flow rates at the outlets, which result from a complex mixing process in the mixing chamber of the HVAC unit, are approximated by a linear combination of orthonormal POD modes. A FRN is established to compute the volume flow rates at the outlets. By combining the classical FRN with the POD model the weighting coefficients for the POD modes can be determined from the volume flow rates estimated by the network model. This allows to reconstruct the enthalpy flow rates at the outlets and to calculate the outlet temperatures. To demonstrate the new method on a real HVAC geometry a test rig is built for the simultaneous measurement of volume flow rates and temperatures at the outlets. The experimental data is used to perform the POD, to calibrate the FRN and to evaluate the performance of the thermal HVAC model. The proposed method provides a systematic framework to accurately predict the outlet temperatures at low computational costs. It could be shown that the absolute temperature deviation between model and experiment at the outlets is less than 2 K. An inverse application of the model for climate control was demonstrated. Instead of using expensive temperature sensors, the model can be applied for model based ACC which reduces costs and facilitates control algorithms.
Recommended Content
Technical Paper | ROVACS: A New Rotary-Vane Air-Cycle Air-Conditioning and Refrigeration System |
Technical Paper | Modeling of Automotive Passenger Compartment and Its Air Conditioning System |
Authors
Topic
Citation
Christ, P. and Sattelmayer, T., "Thermal Modeling of an Automotive HVAC Unit Using a Coupled POD and Flow Resistance Network Approach," SAE Technical Paper 2018-01-0068, 2018, https://doi.org/10.4271/2018-01-0068.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 | ||
Unnamed Dataset 5 | ||
Unnamed Dataset 6 | ||
Unnamed Dataset 7 | ||
Unnamed Dataset 8 | ||
Unnamed Dataset 9 | ||
Unnamed Dataset 10 | ||
Unnamed Dataset 11 |
Also In
References
- Federal Motor Vehicle Safety Standard No. 103
- Lorenz , M. , Fiala , D. , Spinnler , M. , and Sattelmayer , T. A Coupled Numerical Model to Predict Heat Transfer and Passenger Thermal Comfort in Vehicle Cabins SAE Technical Paper 2014-01-0664 2014 10.4271/2014-01-0664
- Lorenz , M. 2015
- Fiala , D. , Kevin , J.L. , and Stohrer , M. A Computer Model of Human Thermoregulation for a Wide Range of Environmental Conditions: The Passive System Journal of Applied Physiology 87 5 1957 1972 1999 10.1007/s004840100099
- Marcos , D. , Pino , F.J. , Bordons , C. , and Guerra , J.J. The Development and Validation of a Thermal Model for the Cabin of a Vehicle Applied Thermal Engineering 66 1 646 656 2014 10.1016/j.applthermaleng.2014.02.054
- Khayyam , H. Adaptive Intelligent Control of Vehicle Air Conditioning System Applied Thermal Engineering 51 1 1154 1161 2013 10.1016/j.applthermaleng.2012.10.028
- ASHRAE 2004
- Daly , S. Automotive Air Conditioning and Climate Control Systems Butterworth-Heinemann 2011 9780750669559
- Zhang , H. , Arens , E. , Huizenga , C. , and Han , T. Thermal Sensation and Comfort Models for Non-Uniform and Transient Environments: Part I: Local Sensation of Individual Body Parts Building and Environment 45 2 380 388 2010 10.1016/j.buildenv.2009.06.018
- Zhang , H. , Arens , E. , Huizenga , C. , and Han , T. Thermal Sensation and Comfort Models for Non-Uniform and Transient Environments: Part II: Local Comfort of Individual Body Parts Building and Environment 45 2 389 398 2010 10.1016/j.buildenv.2009.06.015
- Zhang , H. , Arens , E. , Huizenga , C. , and Han , T. Thermal Sensation and Comfort Models for Non-Uniform and Transient Environments. Part III: Whole-Body Sensation and Comfort Building and Environment 45 2 399 410 2010 10.1016/j.buildenv.2009.06.020
- Hirota , M. , Mohri , E. , Asano , H. , and Goto , H. Experimental Study on Turbulent Mixing Process in Cross-Flow Type T-Junction International Journal of Heat and Fluid Flow 31 5 776 784 2010 10.1016/j.ijheatfluidflow.2010.04.006
- Hirota , M. , Nakayama , H. , Koide , S. , and Takeuchi , I. Experimental Study on Turbulent Flow and Mixing in Counter-Flow Type T-Junction ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference 2007 10.1115/HT2007-32777
- Ji , H.S. and Lee , S.J. Experimental Study of the Flow Characteristics in an Automotive HVAC System Using a PIV Technique International Journal of Automotive Technology 10 5 561 566 2009 10.1007/s12239-009-0065-6
- Ikuta , S. , Kaoru , T. , and Komei , K. Numerical Simulation of Air and Heat Flow in a Heater Unit SAE Technical Paper 890574 1989 10.4271/890574
- Bel-Hassan , M. , Asad , S. , and Reza , G. CFD Simulations of an Automotive HVAC Blower: Operating under Stable and Unstable Flow Conditions SAE Technical Paper 2008-01-0735 2008 10.4271/2008-01-0735
- Tiwari , S. , Agarwal , R. , Saxena , P. , and Acre , J. CFD-Based Design Enhancements in Passenger Vehicle HVAC Module SAE Technical Paper 2009-26-0058 2009 10.4271/2009-26-0058
- Patidar , A. , Shankar , N. , and Manoj , P. CFD Analysis and Validation of an Automotive HVAC System SAE Technical Paper 2009-01-0535 2009 10.4271/2009-01-0535
- Kitada , M. , Asano , H. , Kanbara , M. , and Akaike , S. Development of Automotive Air-Conditioning System Basic Performance Simulator: CFD Technique Development JSAE Review 21 1 91 96 2000 10.1016/S0389-4304(99)00077-6
- Bennett , L. , Dixon , C.W.S. , and Watkins , S. Modelling and Testing of Air Flow in a HVAC Module SAE Technical Paper 2002-01-0506 2002 10.4271/2002-01-0506
- Qu , X. , Qi , Z. , Shi , J. , and Zhou , H. Numerical Model of the Temperature Control Curve Linearity of HVAC Module in Automobile Air-Conditioning System and Applications Journal of Thermal Science and Engineering Applications 2 4 041008 2011 10.1115/1.4003508
- Kiss , T. , Chaney , L. , and Meyer , J. A New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink SAE Int. J. Passeng. Cars - Mech. Sys. 6 826 840 2013 10.4271/2013-01-0850
- Sambandan , S. and Valencia , M. Robust 1D Modelling for Automotive HVAC Warmup Prediction Using DFSS Approach SAE Technical Paper 2017-01-0179 2017 10.4271/2017-01-0179
- Afram , A. and Janabi-Sharifi , F. Review of Modeling Methods for HVAC Systems Applied Thermal Engineering 67 1 507 519 2014 10.1016/j.applthermaleng.2014.03.055
- Forrest , W.O. and Bhatti , M.S. Energy Efficient Automotive Air Conditioning System SAE Technical Paper 2002-01-0229 2002 10.4271/2002-01-0229
- Kumar , G.V. , Reshma Sheerin , M. , Saravana Prabau , V. , Jean , K. et al. Comparison of Different Approaches for Temperature Analysis in an Automotive HVAC System SAE Technical Paper 2014-01-2395 2014 10.4271/2014-01-2395
- Ma , X. , Karniadakis , G.E. , Park , H. , and Gharib , M. DPIV/T-Driven Convective Heat Transfer Simulation International Journal of Heat and Mass Transfer 45 17 3517 3527 2002 10.1016/S0017-9310(02)00071-6
- Bergmann , M. , Bruneau , C.H. , and Iollo , A. Enablers for Robust POD Models Journal of Computational Physics 228 2 516 538 2009 10.1016/j.jcp.2008.09.024
- Lorenzi , S. , Cammi , A. , Luzzi , L. , and Rozza , G. POD-Galerkin Method for Finite Volume Approximation of Navier-Stokes and RANS Equations Computer Methods in Applied Mechanics and Engineering 311 151 179 2016 10.1016/j.cma.2016.08.006
- Idelchik , I.E. and Fried , E. Handbook of Hydraulic Resistance Jaico Publishing House 1986 8179921182
- Chatterjee , A. An Introduction to the Proper Orthogonal Decomposition Current Science 78 7 808 817 2000
- Holmes , P. Turbulence, Coherent Structures, Dynamical Systems and Symmetry Cambridge University Press 2012 9780511622700
- Sirovich , L. Turbulence and the Dynamics of Coherent Structures. I. Coherent Structures Quarterly of Applied Mathematics 45 3 561 571 1987
- Christ , P. and Sattelmayer , T. Reduced Order Modelling of Flow and Mixing in an Automobile HVAC System Using Proper Orthogonal Decomposition Applied Thermal Engineering 2018
- International Organization for Standardization 2007
- International Organization for Standardization 2003
- V 20 COMMITTEE Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer New York American Society of Mechanical Engineers 2009
- Schmandt , B. and Herwig , H. A Standard Method to Determine Loss Coefficients of Conduit Components Based on the Second Law of Thermodynamics ASME Conference Proceedings 2012