This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Towards Optimal Performance of a Thermoelectric Generator for Exhaust Waste Heat Recovery from an Automotive Engine
Technical Paper
2018-01-0050
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
Thermoelectric generator has very quickly become a hot research topic in the last five years because its broad application area and very attractive features such as no moving parts, low maintenance, variety of thermoelectric materials that total together cover a wide temperature range. The biggest disadvantage of the thermoelectric generator is its low conversion efficiency. So that when design and manufacture a thermoelectric generator for exhaust waste heat recovery from an automotive engine, the benefit of fuel consumption from applying a thermoelectric generator would be very sensitive to the weight, the dimensions, the cost and the practical conversion efficiency. Additionally, the exhaust gas conditions vary with the change of engine operating point. This creates a big challenge for the design of the hot side heat exchanger in terms of optimizing the electrical output of the thermoelectric generator during an engine transient cycle.
Based on experimental work and a validated thermoelectric generator dynamic model, the authors have identified a few issues that have big impact on the thermoelectric generator performance for automotive applications. Potential solutions also have been proposed and discussed in this paper. They include module level optimization, heat exchanger design optimization in terms of fin thermal resistance for a transient cycle, assembly and interface optimization aims for compact size and minimized contact thermal resistance, optimization of the number of modules for total maximum power output etc.
Authors
Citation
Yang, Z., Stobart, R., Lan, S., Mason, B. et al., "Towards Optimal Performance of a Thermoelectric Generator for Exhaust Waste Heat Recovery from an Automotive Engine," SAE Technical Paper 2018-01-0050, 2018, https://doi.org/10.4271/2018-01-0050.Also In
References
- Champier , D. Thermoelectric Generators: A Review of Applications In Energy Conversion and Management 140 167 181 2017 10.1016/j.enconman.2017.02.070
- Lan , S. , Rouaud , C. , Stobart , R. , Chen , R. et al. The Potential of Thermoelectric Generator in Parallel Hybrid Vehicle Applications SAE Technical Paper 2017-01-0189 2017 10.4271/2017-01-0189
- Mori , M. , Yamagami , T. , Oda , N. , Hattori , M. et al. Current Possibilities of Thermoelectric Technology Relative to Fuel Economy SAE Technical Paper 2009-01-0170 2009 10.4271/2009-01-0170
- Rogl , G. and Rogl , P. Skutterudites, a most Promising Group of Thermoelectric Materials In Current Opinion in Green and Sustainable Chemistry 4 50 57 2017 10.1016/j.cogsc.2017.02.006
- Yinong Yin , Bharati Tudu , Ashutosh Tiwari 2017 10.1016/j.vacuum.2017.04.015
- Moure , A. , Rull-Bravo , M. , Abad , B. , Del Campo , A. et al. Thermoelectric Skutterudite/oxide nanocomposites: Effective decoupling of electrical and thermal conductivity by functional interfaces In Nano Energy 31 393 402 2017 10.1016/j.nanoen.2016.11.041
- Fitriani , R. , Ovik , B.D. , Long , M.C. , Barma , M. et al. A Review on Nanostructures of High-Temperature Thermoelectric Materials for Waste Heat Recovery In Renewable and Sustainable Energy Reviews 64 635 659 2016 10.1016/j.rser.2016.06.035
- Kumar , S. , Heister , S.D. , Xu , X. , Salvador , J.R. et al. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation and Topological Studies Journal of Electronic Materials; Warrendale 42 6 944 955 Jun 2013
- Bélanger , S. and Gosselin , L. Multi-objective genetic algorithm optimization of thermoelectric heat exchanger for waste heat recovery International Journal of Energy Research 36 5 632 642 2012 10.1002/er.1820
- Espinosa , N. , Lazard , M. , Aixala , L. et al. Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery Journal of Electronic Materials 39 1446 2010 10.1007/s11664-010-1305-2
- Jang , J.-Y. and Tsai , Y.-C. Optimization of Thermoelectric Generator Module Spacing and Spreader Thickness Used in a Waste Heat Recovery System In Applied Thermal Engineering 51 1-2 677 689 2013 10.1016/j.applthermaleng.2012.10.024
- Yang , Z. , Winward , E. , Lan , S. , and Stobart , R. Optimization of the Number of Thermoelectric Modules in a Thermoelectric Generator for a Specific Engine Drive Cycle SAE Technical Paper 2016-01-0232 2016 10.4271/2016-01-0232