This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Development of a Reduced Chemical Mechanism for Combustion of Gasoline-Biofuels
Technical Paper
2017-24-0039
ISSN: 0148-7191,
e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Bio-derived fuels are drawing more and more attention in the internal combustion engine (ICE) research field in recent years. Those interests in use of renewable biofuels in ICE applications derive from energy security issues and, more importantly, from environment pollutant emissions concerns.
High fidelity numerical study of engine combustion requires advanced computational fluid dynamics (CFD) to be coupled with detailed chemical kinetic models.
This task becomes extremely challenging if real fuels are taken into account, as they include a mixture of hundreds of different hydrocarbons, which prohibitively increases computational cost. Therefore, along with employing surrogate fuel models, reduction of detailed kinetic models for multidimensional engine applications is preferred.
In the present work, a reduced mechanism was developed for primary reference fuel (PRF) using the directed relation graph (DRG) approach. The mechanism was generated from an existing detailed mechanism. The adjustment of reaction rate constants of selected reactions was performed and the present reduced mechanism was validated against experiments in terms of ignition delay times, flame speed and HCCI combustion. Employing similar procedures, reduced reaction mechanisms for ethanol and butanol were generated and incorporated into the PRF mechanism to be able to model multi-component gasoline-primary alcohols combustion.
The results show that the present reduced mechanism demonstrates reliable performance in combustion predictions, as well as significant improvement of computational efficiency in multi-dimensional CFD simulations.
Authors
Citation
Piazzullo, D., Costa, M., Ra, Y., ROCCO, V. et al., "Development of a Reduced Chemical Mechanism for Combustion of Gasoline-Biofuels," SAE Technical Paper 2017-24-0039, 2017, https://doi.org/10.4271/2017-24-0039.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
[Unnamed Dataset 1] |
Also In
References
- U.S. Environmental Protection Agency, Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 through 2015, EPA-420-R-15-016 - December 2015.
- Hula, A., Alson, J., Bunker, A., and Bolon, K., "Analysis of Technology Adoption Rates in New Vehicles," SAE Technical Paper 2014-01-0781, 2014, doi:10.4271/2014-01-0781.
- Yao, M., Zheng, Z., Liu, H, “Progress and recent trends in homogeneous charge compression ignition (HCCI) engines”, Prog. Energy Combust. Sci., 35 (5), 398-437, 2009.
- Kokjohn, S. L., Hanson, R. M., Splitter, D. A., Reitz, R. D., “Fuel reactivity controlled compression ignition (RCCI): A pathway to controlled high-efficiency clean combustion”, Int. J. Eng. Res. 12:209-226, 2011.
- Zhen, X., Wang, Y., “An overview of methanol as an internal combustion engine fuel”, Renewable Sustainable Energy Rev. 52:477-493, 2015.
- Viljoen, C., Yates, A., Swarts, A., Balfour, G. et al., "An Investigation of the Ignition Delay Character of Different Fuel Components and an Assessment of Various Autoignition Modelling Approaches," SAE Technical Paper 2005-01-2084, 2005, doi:10.4271/2005-01-2084.
- Reitz, R. D., “Directions in internal combustion engine research”, Combust. Flame, 160 (1):1-8, 2013.
- Andrae, J., Johansson, D., Björnbom, P., Risberg, P. et al., Co-oxidation in the auto-ignition of primary reference fuels and n-heptane/toluene blends, Combust. Flame, 140:267-286, 2005.
- Bradley, D., Head, R.A., "Engine autoignition: the relationship between octane numbers and autoignition delay times", Combustion and Flame, 147(3) :171-184, 2006.
- Fieweger, K., Blumenthal, R., Adomeit, G., "Self-ignition of SI engine model fuels: a shock tube investigation at high pressure", Combustion and Flame, 109(4): 599-619, 1997.
- Hartmann, M., Gushterova, I., Fikri, M., Schulz, C. et al. "Autoignition of toluene-doped n-heptane and iso-octane/air mixtures: High-pressure shock-tube experiments and kinetics modeling", Combustion and Flame, 158(1): 172-178, 2011.
- Huang, Y., Sung, C.J., Eng, J. A., "Laminar flame speeds of primary reference fuels and reformer gas mixtures", Combustion and Flame, 139(3): 239-251, 2004.
- Bradley, D., Hicks, R. A., Lawes, M., Sheppard, C. G. W., et al. "The measurement of laminar burning velocities and Markstein numbers for iso-octane-air and iso-octane-n-heptane-air mixtures at elevated temperatures and pressures in an explosion bomb", Combustion and flame, 115(1):126-144, 1998.
- Cathonnet, M., Dagaut, M., Reuillion, P., "High pressure oxidation of liquid fuels from low to high temperature", Combust. Sci. and Tech, 95:233, 1994.
- Curran, H. J., Gaffuri, P., Pitz, W. J., Westbrook, C. K., "A comprehensive modeling study of n-heptane oxidation", Combustion and flame, 114(1): 149-177, 1998.
- Curran, H. J., Gaffuri, P., Pitz, W. J., Westbrook, C. K., "A comprehensive modeling study of iso-octane oxidation", Combustion and flame, 129(3):253-280, 2002.
- Fisher, E. M., Pitz, W. J., Curran, H. J., Westbrook, C. K., "Detailed chemical kinetic mechanisms for combustion of oxygenated fuels", Proceedings of the combustion institute 28(2): 1579-1586, 2000.
- Bounaceur, R., Da Costa, I., Fournet, R., Billaud, F. et al, “Experimental and modeling study of the oxidation of toluene”, Int. J. Chem. Kinet., 37:25 49, 2005.
- Westbrook, C. K., Pitz, W. J., Herbinet, O., Curran, H. J., et al., "A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane,", Combustion and Flame 156(1):181-199, 2009.
- Lu, T., Law, C.K., “Strategies for mechanism reduction for large hydrocarbons: n-heptane,” Combust. Flame, 154(1-2):153-163, 2008.
- Lu, T., Law, C.K., “Linear Time Reduction of Large Kinetic Mechanisms with Direct Relation Graph: n-Heptane and iso-Octane,” Combust. Flame 144:24-36, 2006.
- Lu, T. Law, C.K., “A directed relation graph method for mechanism reduction,” Proc. Combust. Inst. 30(1):1333-1341, 2005.
- Pepiot-Desjardins, P., Pitsch, H., “An efficient error-propagation-based reduction method for large chemical kinetic mechanisms,” Combust. Flame 154(1-2):67-81, 2008.
- Chaos, M., Zhao, Z., Kazakov, A., Gokulakrishnan et al., “A PRF+ toluene surrogate fuel model for simulating gasoline kinetics”, 5th US combustion Meeting, pp. 25-28, 2007.
- Andrae, J. C., Brinck, T., Kalghatgi, G. T., "HCCI experiments with toluene reference fuels modeled by a semidetailed chemical kinetic model", Combustion and Flame, 155(4): 696-712, 2008.
- Risberg, P., Kalghatgi, G., and Ångstrom, H., "Auto-ignition Quality of Gasoline-Like Fuels in HCCI Engines," SAE Technical Paper 2003-01-3215, 2003, doi:10.4271/2003-01-3215.
- Kalghatgi, G. and Head, R., "The Available and Required Autoignition Quality of Gasoline - Like Fuels in HCCI Engines at High Temperatures," SAE Technical Paper 2004-01-1969, 2004, doi:10.4271/2004-01-1969.
- Gauthier, B. M., Davidson, D. F., Hanson, R. K., “Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures”, Combustion and Flame, 139(4):300-311, 2004.
- Peters, N., Paczko, G., Seiser, R., Seshadri, K., “Temperature cross-over and non-thermal runaway at two-stage ignition of n-heptane” Combustion and Flame, 128(1):38-59, 2002.
- Hasse, C., Bollig, M., Peters, N., Dwyer, H. A., “Quenching of laminar iso-octane flames at cold walls”, Combustion and flame, 122(1):117-129, 2000.
- Brakora, J., Ra, Y., Reitz, R., McFarlane, J. et al., "Development and Validation of a Reduced Reaction Mechanism for Biodiesel-Fueled Engine Simulations," SAE Int. J. Fuels Lubr. 1(1):675-702, 2009, doi:10.4271/2008-01-1378.
- Ra, Y., Reitz, R. D., “A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels”, Combustion and Flame, 155(4):713-738, 2008.
- Ranzi, E., Frassoldati, A., Granata, S., Faravelli, T., “Wide-range kinetic modeling study of the pyrolysis, partial oxidation, and combustion of heavy n-alkanes”, Industrial & engineering chemistry research, 44(14):5170-5183, 2005.
- Puduppakkam, K., Liang, L., Naik, C., Meeks, E. et al., "Combustion and Emissions Modeling of a Gasoline HCCI Engine Using Model Fuels," SAE Technical Paper 2009-01-0669, 2009, doi:10.4271/2009-01-0669.
- Jin, C., Yao, M., Liu, H., Lee, C.-F.F. et al., ”Progress in the production and application of n-butanol as a biofuel”, Renew. Sustain. Energ. Rev., 15:4080-4106, 2011, doi:10.1016/j.rser.2011.06.001.
- Sarathy, S.M., Oßwald, P., Hansen, N., Kohse-Höinghaus, K., “Alcohol combustion chemistry”, Prog. Energy Combust. Sci., 44:40-102, 2014, doi:10.1016/j.pecs.2014.04.003.
- Marinov, N.M., “A detailed chemical kinetic model for high temperature ethanol oxidation”, Int.J.Chem.Kinet., 31:183-220, 1999, doi:10.1002/(SICI)1097-4601(1999)31:3<183::AID-KIN3>3.0.CO;2-X
- Li, J., Zhao, Z., Kazakov, A., Chaos et al., “A comprehensive kinetic mechanism for CO, CH2O and CH3OH combustion”, Int.J.Chem.Kinet., 39:109-136, 2007, doi:10.1002/kin.20218.
- Metcalfe, W.K., Burke, S.M., Ahmed, S.S., Curran, H.J., “A hierarchical and comparative kinetic modeling study of C1-C2 hydrocarbon and oxygenated fuels”, Int. J. Chem. Kinet. 45:638-675, 2013, doi:10.1002/kin.20802.
- Mittal, G., Burke, S.M., Davies, V.A., Parajuli, B. et al., "Autoignition of ethanol in a rapid compression machine", Combustion and Flame, 161(5):1164-1171, 2014.
- Kumar, K., Sung, C.-J., “Autoignition of methanol: experiments and computations”, Int. J. Chem. Kinet. 43:175-184, 2011, doi:10.1002/kin.20546.
- Beeckmann, J., Cai, L., Pitsch, H., “Experimental investigation of the laminar burning velocities of methanol, ethanol, n-propanol, and n-butanol at high pressure”, Fuel 117(PartA):340-350, 2014, doi:10.1016/j.fuel.2013.09.025.
- Leplat, N., Dagaut, P., Togbé, C., Vandooren, J., “Numerical and experimental study of ethanol combustion and oxidation in laminar premixed flames and in jet-stirred reactor”, Combust. Flame, 158:705-725, 2011, doi:10.1016/j.combustflame.2010.12.008.
- Rakopoulos, D.C., Rakopoulos, C.D., Kakaras, E.C., Giakoumis, E.G., “Effects of ethanol-diesel fuel blends on the performance and exhaust emissions of heavy duty DI diesel engine”, Energy Convers. Manag., 49:3155-3162, 2008, doi:10.1016/j.enconman.2008.05.023.
- Agarwal, A.K. “Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines”, Prog. Energy Combust. Sci., 33:233-271, 2007, doi:10.1016/j.pecs.2006.08.003.
- Rakopoulos, D.C., Rakopoulos, C.D., Hountalas, D.T., Kakaras, E.C. et al., “Investigation of the performance and emissions of bus engine operating on butanol/diesel fuel blends”, Fuel, 89:2781-2790, 2010, doi:10.1016/j.fuel.2010.03.047.
- Yao, M., Wang, H., Zheng, Z., Yue, Y., “Experimental study of n-butanol additive and multi-injectionon HD diesel engine performance and emissions”, Fuel, 89:2191-2201, 2010, doi:10.1016/j.fuel.2010.04.008.
- Gu, X., Huang, Z., Cai, J., Gong, J. et al., “Emission characteristics of a spark-ignition engine fuelled with gasoline-n-butanol blends in combination with EGR”, Fuel, 93:611-617, 2012, doi:10.1016/j.fuel.2011.11.040.
- Chen, Z., Wu, Z., Liu, J., Lee, C., “Combustion and emissions characteristics of high n-butanol/diesel ratio blend in a heavy-duty diesel engine and EGR impact”, Energy Convers. Manag., 78:787-795, 2014, doi:10.1016/j.enconman.2013.11.037.
- Liu, H., Wang, X., Zheng, Z., Gu, J. et al., “Experimental and simulation investigation of the combustion characteristics and emissions using n-butanol/biodiesel dual-fuel injection on a diesel engine”, Energy 74:741-752, 2014, doi:10.1016/j.energy.2014.07.041.
- Wang, H., Zheng, Z., Yao, M., Reitz, R.D., “An experimental and numerical study on the effects of fuel properties on the combustion and emissions of low-temperature combustion diesel engines”, Combust. Sci. Technol., 186:1795-1815, 2014, doi:10.1080/00102202.2014.920836.
- Wang, H., Yao, M., Reitz, R.D., “Development of a Reduced Primary Reference Fuel (PRF) Mechanism for IC Engine Combustion Simulations”, Energy & Fuels, 27:7843-53, 2013.
- Sarathy, S. M., Vranckx, S., Yasunaga, K., Mehl et al., “A comprehensive chemical kinetic combustion model for the four butanol isomers”, Combustion and Flame, 159(6):2028-2055, 2012.
- Lu, T., Law, C. K. “Linear time reduction of large kinetic mechanisms with directed relation graph: n-Heptane and iso-octane”, Combustion and Flame, 144(1):24-36, 2006.
- Patel, A., Kong, S., and Reitz, R., "Development and Validation of a Reduced Reaction Mechanism for HCCI Engine Simulations," SAE Technical Paper 2004-01-0558, 2004, doi:10.4271/2004-01-0558.
- Brakora, J., Ra, Y., Reitz, R., McFarlane, J. et al., "Development and Validation of a Reduced Reaction Mechanism for Biodiesel-Fueled Engine Simulations," SAE Int. J. Fuels Lubr. 1(1):675-702, 2009, doi:10.4271/2008-01-1378.
- Ra, Y., Chuahy, F., Kokjohn, S., “Development and validation of a reduced reaction mechanism with a focus on diesel fuel/syngas co-oxidation”, Fuel, 185:663-683, 2016.
- Cai, L., Heinz, P., "Optimized chemical mechanism for combustion of gasoline surrogate fuels", Combustion and Flame 162(5):1623-1637, 2015.
- Haas, F. M., Chaos, M., Dryer, F.L., "Low and intermediate temperature oxidation of ethanol and ethanol-PRF blends: An experimental and modeling study", Combustion and flame 156(12): 2346-2350, 2009.
- Weber, B. W., Kumar, K., Zhang, Y., Sung, C. J., “Autoignition of n-butanol at elevated pressure and low-to-intermediate temperature”, Combustion and flame, 158(5):809-819, 2011.
- Saisirirat, P., Togbé, C., Chanchaona, S., Foucher, F. et al., “Auto-ignition and combustion characteristics in HCCI and JSR using 1-butanol/n-heptane and ethanol/n-heptane blends”, Proceedings of the Combustion Institute, 33(2):3007-3014, 2011.
- Viggiano, A., Magi, V., "A comprehensive investigation on the emissions of ethanol HCCI engines", Applied Energy 93:277-287, 2012.
- Wang, H., Del Vescovo, D., Zheng, Z., Yao, M. et al., “Reaction mechanisms and HCCI combustion processes of mixtures of n-heptane and the butanols”, Frontiers in Mechanical Engineering, 1:3, 2015.
- Ra, Y., Loeper, P., Reitz, R., Andrie, M. et al., "Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime," SAE Int. J. Engines 4(1):1412-1430, 2011, doi:10.4271/2011-01-1182.