This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Sensitivity of Flamelet Combustion Model to Flame Curvature for IC Engine Application
Technical Paper
2017-24-0038
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Engines with reduced emissions and improved efficiency are of high interest for road transport. However, achieving these two goals is challenging and various concepts such as PFI/DI/HCCI/PCCI are explored by engine manufacturers. The computational fluid dynamics is becoming an integral part of modern engine development programme because this method provides access to in-cylinder flow and thermo-chemical processes to develop a closer understanding to tailor tumble and swirling motions to construct green engines. The combustion modelling, its accuracy and robustness play a vital role in this. Out of many modelling methods proposed in the past flamelet based methods are quite attractive for SI engine application. In this study, FlaRe (Flamelets revised for physical consistencies) approach is used to simulate premixed combustion inside a gasoline PFI single-cylinder, four-stroke SI engine. This approach includes a parameter representing the effects of flame curvature on the burning rate. Since the reactant temperature and pressure inside the cylinder are continually varying with time, the mutual influence of flame curvature and thermo-chemical activities may be stronger in IC engines and thus this parameter may not be constant. The sensitivity of engine simulation results to this parameter is investigated for a range of engine speed and load conditions. The results indicate some sensitivity and so a careful calibration may be required for URANS calculation which can be avoided using dynamic evaluations for LES.
Authors
Topic
Citation
Ghiasi, G., Ahmed, I., Wright, Y., Koch, J. et al., "Sensitivity of Flamelet Combustion Model to Flame Curvature for IC Engine Application," SAE Technical Paper 2017-24-0038, 2017, https://doi.org/10.4271/2017-24-0038.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
[Unnamed Dataset 1] | ||
[Unnamed Dataset 2] | ||
[Unnamed Dataset 3] |
Also In
References
- Swaminathan, N. and BRAY, K. N. C. “Fundamentals and Challenges.” In “Turbulent Premixed Flames,” , Swaminathan, N. and Bray, K., editors, 1-40, (Cambridge University Press, Cambridge, UK2011).
- Haworth, D., "A Review of Turbulent Combustion Modeling for Multidimensional In-Cylinder CFD," SAE Technical Paper 2005-01-0993, 2005, doi:10.4271/2005-01-0993.
- Spalding, D. B. “Mixing and Chemical Reaction in Steady Confined Turbulent Flames.” Symposium (International) on Combustion 13(1):649-657, 1971. ISSN 00820784. doi:10.1016/S0082-0784(71)80067-X.
- Abu-Orf, G. M. and Cant, R. S. “A Turbulent Reaction Rate Model for Premixed Turbulent Combustion in Spark-Ignition Engines.” Combustion and Flame 122(3):233-252, 2000. ISSN 00102180. doi: 10.1016/S0010-2180(00)00123-1.
- Drake, M. C., Fansler, T. D. and Lippert, A. M. “Stratified-Charge Combustion: Modeling and Imaging of a Spray-Guided Direct-Injection Spark-Ignition Engine.” Proceedings of the Combustion Institute 30(2):2683-2691, 2005.
- Weller, H. G., Uslu, S., Gosman, A. D., Maly, R. R., Herweg, R. and Heel, B. “Prediction of Combustion in Homogeneous-Charge Spark-Ignition Engines.” In “International Symposium COMODIA 94,” 163-169 (1994).
- Heel, B., Maly, R. R., Weller, H. G. and Gosman, A. D. “Validation Of SI Combustion Model Over Range Of Speed, Load, Equivalence Ratio And Spark Timing.” In “International Symposium COMODIA 98,” 255-260.
- Kech, J. M., Reissing, J., Gindele, J. and Spicher, U. “Analyses of The Combustion Process in a Direct Injection Gasoline Engine.” In “International Symposium COMODIA 98,” 287-292 (1998).
- Ewald, J. and Peters, N. “On unsteady premixed turbulent burning velocity prediction in internal combustion engines.” Proceedings of the Combustion Institute 31(2):3051-3058, 2007. ISSN 15407489. doi: 10.1016/j.proci.2006.07.119.
- Tan, Z. and Reitz, R. D. “An Ignition and Combustion Model Based on The Level-Set Method for Spark Ignition Engine Multidimensional Modeling.” Combustion and Flame 145:1-15, 2006.
- Dekena, M. and Peters, N. “Combustion Modeling with the G-Equation.” Oil Gas Sci. Technol. 54:265-270, 1999.
- Liang, L. and Reitz, R., "Spark Ignition Engine Combustion Modeling Using a Level Set Method with Detailed Chemistry," SAE Technical Paper 2006-01-0243, 2006, doi:10.4271/2006-01-0243.
- Zhao, X., Matthews, R., and Ellzey, J., "Three-Dimensional Numerical Simulation of Flame Propagation in Spark Ignition Engines," SAE Technical Paper 932713, 1993, doi:10.4271/932713.
- Baritaud, T. A., Duclos, J. M. and Fusco, A. “Modeling Turbulent Combustion and Pollutant Formation in Stratified Charge SI Engines.” Proceedings of the Combustion Institute 26(2):2627-2635, 1996.
- Henriot, S., Chaouche, A., Cheve, E. and Duclos, J. M. “CFD Aided Development of a SI-DI Engine.” Oil & Gas Science and Technology 54:279-286, 1999.
- Galloni, E., Fontana, G. and Palmaccio, R. “Numerical Analyses of EGR Techniques in a Turbocharged Spark-Ignition Engine.” Applied Thermal Engineering 39:95-104, 2012.
- Duclos, J. M. and Zolver, M. “3D Modeling of Intake, Injection and Combustion in a DI-SI Engine Under Homogeneous and Stratified Operating Conditions.” In “The Fourth International Symposium COMODIA 98,” 335-340 (1998).
- Williams, F. A. “Some Recent Studies in Turbulent Combustion.” In “Smart Control of Turbulent Combustion,” , Yoshida, A., editor, 1-11, (Springer-Verlag, Tokyo, Japan2001).
- Taut, C., Correa, C., Deutschmann, O., Warnatz, J., Einecke, S., Schulz, C. and Wolfrum, J. “Three-Dimensional Modeling With Monte Carlo-Probability Density Function Methods and Laser Diagnostics of the Combustion in a Two-Stroke Engine.” Proceedings Of The Combustion Institute 28:1153-1159, 2000.
- Haworth. D. C. and Haworth, D. “Progress in Probability Density Function Methods for Turbulent Reacting Flows.” Progress in Energy and Combustion Science 36(2):168-259, 2010.
- Kolla, H. and Swaminathan, N. “Strained flamelets for turbulent premixed flames, I: Formulation and planar flame results.” Combustion and Flame 157(5):943-954, 2010. ISSN 00102180. doi:10.1016/j.combustflame.2010.01.018.
- Swaminathan, N., Xu, G., Dowling, A. P. and Balachandran, R. “Heat Release Rate Correlation and Combustion Noise in Premixed Flames.” Journal of Fluid Mechanics 681:80-115, 2011. doi:10.1017/jfm.2011.232.
- Darbyshire, O. R. and Swaminathan, N. “A Presumed Joint pdf Model for Turbulent Combustion with Varying Equivalence Ratio.” Combustion Science and Technology 184(12):2036-2067. doi:10.1080/00102202.2012.696566.
- Ahmed, I. and Swaminathan, N. “Simulation of Spherically Expanding Turbulent Premixed Flames.” Combustion Science and Technology 185(10), 2013. doi:10.1080/00102202.2013.808629.
- Ahmed, I. and Swaminathan, N. “Simulation of Turbulent Explosion of Hydrogen-Air Mixtures.” International Journal of Hydrogen Energy 39(17):9562-9572, 2014. doi:10.1016/j.ijhydene.2014.03.246.
- Chen, Z., Ruan, S. and Swaminathan, N. “Simulation of Turbulent Lifted Methane Jet Flames: Effects of Air-Dilution and Transient Flame Propagation.” Combustion and Flame 162(3):703-716, 2015.
- Chen, Z., M., R. V., Ruan, S., K., D. N. A., Roberts, W. L. and Swaminathan, N. “Simulation of MILD Combustion Using Perfectly Stirred Reactor Model.” Proceedings of the Combustion Institute 36:4279-4286, 2017. doi:10.1016/j.proci.2016.06.007.
- Ruan, S., Swaminathan, N., Isono, M., Saitoh, T. and Saitoh, K. “Simulation of Premixed Combustion with Varying Equivalence Ratio in Gas Turbine Combustor.” J. Propul. Power 31(3):861-871, 2015.
- Sadasivuni, S. K., Bulat, G., Sanderson, V. and Swaminathan, N. “Application of Scalar Dissipation Rate Model to Siemens DLE Combustors.” In “ASME Turbo Expo 2012: Turbine Technical Conference and Exposition,” Paper No. GT2012-68483, 361-370, (Copenhagen, Denmark2012).
- Ahmed, I. “Simulation of Turbulent Flames Relevant to Spark-Ignition Engines.” Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2014.
- Ahmed, I., Ghiasi, G., Sagaya Raj, A., Swaminathan, N. et al., "Spark Ignition Engine Simulation Using a Flamelet Based Combustion Model," SAE Technical Paper 2015-24-2402, 2015, doi:10.4271/2015-24-2402.
- Langella, I., N., S., Gao, Y. and Chakraborty, N. “Assessment of Dynamic Closure for Premixed Combustion Large Eddy Simulation.” Combustion Theory and Modelling 19(5):628-656, 2015. doi:10.1080/13647830.2015.1080387.
- Langella, I., N., S. and Pitz, R. W. “Application of Unstrained Flamelet SGS Closure for Multi-Regime Premixed Combustion.” Combustion and Flame 173:161-178, 2016. doi:10.1016/j.combustf ame.2016.08.025.
- Langella, I. and Swaminathan, N. “Unstrained and Strained Flamelets for LES of Premixed Combustion.” Combustion Theory and Modelling 20(3):410-440, 2016. doi:10.1080/13647830.2016.1140230.
- Chen, Z., Ruan, S. and Swaminathan, N. “Large Eddy Simulation of Flame Edge Evolution in a Spark-Ignited Methane-Air Jet.” Proceedings of the Combustion Institute 36:1645-1652, 2017. doi:10.1016/j.proci.2016.06.023.
- Steurs, K. “Cycle-resolved analysis and modelling of knock in a homogeneous charge spark ignition engine fueled by ethanol and iso-octane.” Ph.d., Swiss Federal Institute of Technology Zürich, Zürich, Switzerland, 2014.
- CD-adapco. “CCM USER GUIDE STAR-CD version 4.22.”, 2014.
- Kolla, H., Rogerson, J. W., Chakraborty, N. and Swaminathan, N. “Scalar Dissipation Rate Modeling and It’s Validation.” Combustion Science and Technology 181(3):518-535, 2009. doi:10.1080/00102200802612419.
- Swaminathan, N. and Bray, K. N. C. “Effect of dilatation on scalar dissipation in turbulent premixed flames.” Combustion and Flame 143(4):549-565, 2005. ISSN 00102180. doi:10.1016/j.combustf ame.2005.08.020.
- Hasse, C., Bollig, M., Peters, N. and A., D. H. “Quenching of Laminar Iso-Octane Flames at Cold Walls.” Combustion and Flame 122(1-2):117-129, 2000. doi:10.1016/S0010-2180(00)00107-3.
- Koch, J. “LES of a Premixed SI Gasoline Engine With Emphasis on Cycle to Cycle Variations of The Combustion Process.” Masters thsis, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland, 2013.
- Angelberger, C., Poinsot, T., and Delhay, B., "Improving Near-Wall Combustion and Wall Heat Transfer Modeling in SI Engine Computations," SAE Technical Paper 972881, 1997, doi:10.4271/972881.
- Granet, V., Vermorel, O., Lacour, C., Enaux, B., Dugué, V. and Poinsot, T. “Large-Eddy Simulation and Experimental Study of Cycle-to-Cyle Variations of Stable and Unstable Operating Points in a Spark Ignition Engine.” Combustiom and Flame 159(4):1562-1575, 2012. doi:10.1016/j.combustf ame.2011.11.018.
- Koch, J., Schmitt, M., Wright, Y., Steurs, K. et al., "LES Multi-Cycle Analysis of the Combustion Process in a Small SI Engine," SAE Int. J. Engines 7(1):269-285, 2014, doi:10.4271/2014-01-1138.
- Delphi Automotive LLP. “Delphi Ignition Coils for Small Engines.”, accessed 27th March 2015. [Online] Available from: http://www.delphi.com/manufacturers/other/powertrain/igncoil.
- Issa, R. I. “Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting.” Journal of Computational Physics 62(1):40-65, 1986. doi: 10.1016/0021-9991(86)90099-9.
- Chakraborty, N., Rogerson, J. W. and Swaminathan, N. “A Priori Assessment of Closures for Scalar Dissipation Rate Transport in Turbulent Premixed Flames Using Direct Numerical Simulation.” Physics of Fluids 20(4):45106, 2008.