This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Optimizing Engine Oils for Fuel Economy with Advanced Test Methods

Journal Article
2017-01-2348
ISSN: 1946-3952, e-ISSN: 1946-3960
Published October 08, 2017 by SAE International in United States
Optimizing Engine Oils for Fuel Economy with Advanced Test Methods
Sector:
Citation: Kocsis, M., Morgan, P., Michlberger, A., Delbridge, E. et al., "Optimizing Engine Oils for Fuel Economy with Advanced Test Methods," SAE Int. J. Fuels Lubr. 10(3):2017, https://doi.org/10.4271/2017-01-2348.
Language: English

References

  1. Itabashi, S., Murase, E., Tanaka, H., Yamaguchi, M. et al., "New Combustion and Powertrain Control Technologies for Fun-to-Drive Dynamic Performance and Better Fuel Economy," SAE Technical Paper 2017-01-0589, 2017, doi:10.4271/2017-01-0589.
  2. Olmeda, P., Martin, J., Garcia, A., Villalta, D. et al., "A Combination of Swirl Ratio and Injection Strategy to Increase Engine Efficiency," SAE Int. J. Engines 10(3):2017, doi:10.4271/2017-01-0722.
  3. Hakariya, M., Toda, T., and Sakai, M., "The New Toyota Inline 4-Cylinder 2.5L Gasoline Engine," SAE Technical Paper 2017-01-1021, 2017, doi:10.4271/2017-01-1021.
  4. Shelby, M., Leone, T., Byrd, K., and Wong, F., "Fuel Economy Potential of Variable Compression Ratio for Light Duty Vehicles," SAE Int. J. Engines 10(3):2017, doi:10.4271/2017-01-0639.
  5. Tsuchida, H., Hiraya, K., Tanaka, D., Shigemoto, S. et al., "The Effect of a Longer Stroke on Improving Fuel Economy of a Multiple-Link VCR Engine," SAE Technical Paper 2007-01-4004, 2007, doi:10.4271/2007-01-4004.
  6. Wolfgang, S., Sorger, H., Loesch, S., Unzeitig, W. et al., "The 2-Step VCR Conrod System - Modular System for High Efficiency and Reduced CO2," SAE Technical Paper 2017-01-0634, 2017, doi:10.4271/2017-01-0634.
  7. Xu, B., Yebi, A., Onori, S., Filipi, Z. et al., "Transient Power Optimization of an Organic Rankine Cycle Waste Heat Recovery System for Heavy-Duty Diesel Engine Applications," SAE Int. J. Alt. Power. 6(1):25-33, 2017, doi:10.4271/2017-01-0133.
  8. Risseh, A., Nee, H., Erlandsson, O., Brinkfeldt, K. et al., "Design of a Thermoelectric Generator for Waste Heat Recovery Application on a Drivable Heavy Duty Vehicle," SAE Int. J. Commer. Veh. 10(1):26-44, 2017, doi:10.4271/2017-01-9178.
  9. Jeihouni, Y., Eichler, K., and Franke, M., "Lower Emissions in Commercial Diesel Engines through Waste Heat Recovery," SAE Technical Paper 2016-01-8084, 2016, doi:10.4271/2016-01-8084.
  10. Kapadia, J., Kok, D., Jennings, M., Kuang, M. et al., "Powersplit or Parallel - Selecting the Right Hybrid Architecture," SAE Int. J. Alt. Power. 6(1):68-76, 2017, doi:10.4271/2017-01-1154.
  11. U.S. Energy Information Administration, “Significant fuel economy improvement options exist for light-duty gasoline vehicles,” article July 15, 2016. https://www.eia.gov/todayinenergy/detail.php?id=17111#tabs_SpotPriceSlider-1
  12. Boffa, A. and Hirano, S., "Oil Impacts on Sequence VIB Fuel Economy," SAE Technical Paper 2001-01-1903, 2001, doi:10.4271/2001-01-1903.
  13. Akiyama, K., Ueda, F., Miyake, J., Tasaka, K. et al., "Fuel Economy Performance of the Highly Efficient Fuel Economy Oils Using Chassis Dynamometer Test," SAE Technical Paper 932690, 1993, doi:10.4271/932690.
  14. Styer, J. and Guinther, G., "Fuel Economy Beyond ILSAC GF-5: Correlation of Modern Engine Oil Tests to Real World Performance," SAE Int. J. Fuels Lubr. 5(3):1025-1033, 2012, doi:10.4271/2012-01-1618.
  15. Dickinson, H. C., “Fuel Economy of Automotive Engines,” SAE Technical Paper 190014, 1919, doi:10.4271/190014.
  16. Gangopadhyay, A., Sorab, J., Willermet, P., Schriewer, K. et al., "Prediction of ASTM Sequence VI and VIA Fuel Economy Based on Laboratory Bench Tests," SAE Technical Paper 961140, 1996, doi:10.4271/961140.
  17. Pomeroy, L., “Mechanical Friction as Affected by the Lubricant,” SAE Technical Paper 240009, 1924, doi:10.4271/240009.
  18. Dohner, B., Umehara, H., Kaneko, T., and Yamashita, M., "Development of Novel Friction Modifier Technology Part 2: Vehicle Testing," SAE Technical Paper 2011-01-2126, 2011, doi:10.4271/2011-01-2126.
  19. Kenbeek, D., Buenemann, T., and Rieffe, H., "Review of Organic Friction Modifiers - Contribution to Fuel Efficiency?," SAE Technical Paper 2000-01-1792, 2000, doi:10.4271/2000-01-1792.
  20. Sorab, J., Korcek, S., and Bovington, C., "Friction Reduction in Lubricated Components Through Engine Oil Formulation," SAE Technical Paper 982640, 1998, doi:10.4271/982640.
  21. Park, S., Cho, Y., Sung, K., and Han, N., "The Effect of Viscosity and Friction Modifier on Fuel Economy and the Relationship Between Fuel Economy and Friction," SAE Int. J. Fuels Lubr. 2(2):72-80, 2010, doi:10.4271/2009-01-2662.
  22. Morgan, P., Michlberger, A., Kocsis, M., Gieselman, M. et al., "Advanced Test Methods Aid in Formulating Engine Oils for Fuel Economy," SAE Technical Paper 2016-01-2269, 2016, doi:10.4271/2016-01-2269.
  23. Michlberger, A., Morgan, P., Delbridge, E., Gieselman, M. et al., "Engine Oil Fuel Economy Testing - A Tale of Two Tests," SAE Int. J. Fuels Lubr. 10(2):2017, doi:10.4271/2017-01-0882.

Cited By