This content is not included in your SAE MOBILUS subscription, or you are not logged in.

CFD Driven Parametric Design of Air-Air Jet Pump for Automotive Carbon Canister Purging

Journal Article
2017-01-1316
ISSN: 1946-3995, e-ISSN: 1946-4002
Published March 28, 2017 by SAE International in United States
CFD Driven Parametric Design of Air-Air Jet Pump for Automotive Carbon Canister Purging
Sector:
Citation: Vaishnav, D., Ehteshami, M., Collins, V., Ali, S. et al., "CFD Driven Parametric Design of Air-Air Jet Pump for Automotive Carbon Canister Purging," SAE Int. J. Passeng. Cars - Mech. Syst. 10(2):474-486, 2017, https://doi.org/10.4271/2017-01-1316.
Language: English

References

  1. Śmierciew K. , Gagan J. , Butrymowicz D. , Łukaszuk M. , and Kubiczek H. Experimental investigation of the first prototype ejector refrigeration system with HFO-1234ze(E) Appl. Therm. Eng. 110 115 125 Jan. 2017 10.1016/j.applthermaleng.2016.08.140
  2. García del Valle J. , Sierra-Pallares J. , Garcia Carrascal P. , and Castro Ruiz F. An experimental and computational study of the flow pattern in a refrigerant ejector. Validation of turbulence models and real-gas effects Appl. Therm. Eng. 89 795 811 Oct. 2015 10.1016/j.applthermaleng.2015.06.064
  3. Gül S. and Sibel Özdoğan Z. Ejector type solid circulation system analysis for circulating fluidized beds Int. J. Multiph. Flow 84 116 128 Sep. 2016 10.1016/j.ijmultiphaseflow.2016.04.020
  4. Chen J. , Jarall S. , Havtun H. , and Palm B. A review on versatile ejector applications in refrigeration systems Renew. Sustain. Energy Rev. 49 67 90 Sep. 2015 10.1016/j.rser.2015.04.073
  5. Zhu Y. , Cai W. , Wen and C. , Li Y. Numerical investigation of geometry parameters for design of high performance ejectors Appl. Therm. Eng. 29 5–6 898 905 Apr. 2009 10.1016/j.applthermaleng.2008.04.025
  6. Pianthong K. , Seehanam W. , Behnia M. , Sriveerakul and T. , Aphornratana S. Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique Energy Convers. Manag. 48 9 2556 2564 Sep. 2007 10.1016/j.enconman.2007.03.021
  7. Hemidi A. , Henry F. , Leclaire S. and Seynhaeve J.-M. CFD analysis of a supersonic air ejector. Part II: Relation between global operation and local flow features Appl. Therm. Eng. 29 14–15 2990 2998 Oct. 2009 10.1016/j.applthermaleng.2009.03.019
  8. Hemidi A. , Henry F. , Leclaire S. , Seynhaeve J.-M. CFD analysis of a supersonic air ejector. Part I: Experimental validation of single-phase and two-phase operation Appl. Therm. Eng. 29 8–9 1523 1531 Jun. 2009 10.1016/j.applthermaleng.2008.07.003
  9. Fan J. , Eves J. , Thompson H. M. , Toropov V. V. , Kapur N. , Copley D. and Mincher A. Computational fluid dynamic analysis and design optimization of jet pumps Comput. Fluids 46 1 212 217 Jul. 2011 10.1016/j.compfluid.2010.10.024
  10. Darwish M. , Sraj I. and Moukalled F. , A coupled finite volume solver for the solution of incompressible flows on unstructured grids J. Comput. Phys. 228 1 180 201 Jan. 2009 10.1016/j.jcp.2008.08.027
  11. Minkowycz W. J. , Sparrow E. M. and Murthy J. Y. Handbook of Numerical Heat Transfer. Hoboken, NJ, USA John Wiley & Sons, Inc 2000 10.1002/9780470172599.fmatter
  12. Hanby R. F. , Silvester D. J. and Chew J. W. , A Comparison of coupled and segregated iterative solution technique for incompressible swirling flow Int. J. Numer. Methods Fluids 22 5 353 373 Mar. 1996
  13. Hauke G. , Landaberea A. , Garmendia I. and Canales J. A segregated method for compressible flow computation Part I: isothermal compressible flows Int. J. Numer. Methods Fluids 47 4 271 323 Feb. 2005 10.1002/fld.808
  14. Sanger , N. L. An experimental investigation of several low-area-ratio water jet pumps Journal of Basic Engineering 92 1 1970 11 19 10.1115/1.3424917
  15. Mueller N.H.G. Water Jet Pumps Journal of the hydraulics division, Proceedings of the American Society of Civil Engineers 90 83 113

Cited By