This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Estimation of the Effects of Auxiliary Electrical Loads on Hybrid Electric Vehicle Fuel Economy
Technical Paper
2017-01-1155
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
In recent years the fuel efficiency of modern hybrid electric vehicle (HEV) powertrains has progressed to a point where low voltage auxiliary electrical system loads have a pronounced impact on fuel economy (FE). While improving the energy consumption of an individual component may result in minor improvements, the collective optimization of such loads across a complete vehicle system can result in meaningful FE gains. Traditional methods using chassis dynamometer testing alone to quantify the impact of a specific auxiliary load can lead to issues where signal state changes are too small for accurate detection. This presents difficulties in accurately predicting the influence of such loads on FE of next-generation electrified vehicles under development. This paper describes a newly developed method where dynamometer test results are combined with computer simulation analyses to create a practical technique for assessing the impact of small changes in auxiliary load energy consumption. The process combines the best features of empirical testing with model-based system engineering and accurately estimates the effect of small changes in total average oncycle auxiliary load power. This approach supports timely and resource-efficient estimates of the FE impact of auxiliary load components and control strategies. An overview of the effects of auxiliary load power on the FE of a modern HEV is presented for different drive cycles and the estimation process is presented.
Recommended Content
Technical Paper | Fuel Used for Vehicle Air Conditioning: A State-by-State Thermal Comfort-Based Approach |
Technical Paper | Validation of ADVISOR as a Simulation Tool for a Series Hybrid Electric Vehicle |
Authors
Topic
Citation
Rhodes, K., Kok, D., Sohoni, P., Perry, E. et al., "Estimation of the Effects of Auxiliary Electrical Loads on Hybrid Electric Vehicle Fuel Economy," SAE Technical Paper 2017-01-1155, 2017, https://doi.org/10.4271/2017-01-1155.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 |
Also In
References
- Thomas , J. Drive Cycle Powertrain Efficiencies and Trends Derived from EPA Vehicle Dynamometer Results SAE Int. J. Passeng. Cars - Mech. Syst. 7 4 1374 1384 2014 10.4271/2014-01-2562
- US Environmental Protection AgencyEPA April 27 2016 Dynamometer Drive Schedules https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules
- Lammers , M.F.A. May 2006 Impact of Mild-Hybrid Functionality on Fuel Economy and Battery Lifetime Masters Thesis http://alexandria.tue.nl/repository/books/627145.pdf
- Carlson , R. , Wishart , J. , and Stutenberg , K. On-Road and Dynamometer Evaluation of Vehicle Auxiliary Loads SAE Int. J. Fuels Lubr. 9 1 260 268 2016 10.4271/2016-01-0901
- Bradfield M. Improving alternator Efficiency Measurably Reduces Fuel Costs Delco Remy Inc. 2008
- Zhu , C. , Shen , M. , and Obrigkeit , M. A High Power DC/DC Converter Designed for Single Coolant Loop Hybrid Electric Vehicle Application SAE Technical Paper 2010-01-1254 2010 10.4271/2010-01-1254
- Farrington R. B. , Brodt D. L. , and Bursch S. D. 2014 Opportunities to Reduce Vehicle Climate Control Loads http://www.nrel.gov/transportation/pdfs/evs15pres.pdf