This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Utilization of Turbocharger Speed Data to Increase Engine Power and Improve Air Path Control Strategy and Diagnostics
Technical Paper
2017-01-1068
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
Turbocharging is significantly changing design and control strategies for Diesel and gasoline engines. This paper will review new advances in the turbocharger speed measurement. Until recently, the highly accurate and fast turbocharger speed data, based on the physical speed sensor signal, has been mainly used to safely decrease conservative safety margins for turbocharger speed and surge limits. In addition to significantly increasing power and low end torque, new generation sensor technology is providing new opportunities to utilize turbocharger speed data. New, state-of-the-art active eddy current based speed sensor technologies, including a configurable high temperature Application Specific Integrated Circuit (ASIC), and the extremely fast delivery of accurate turbocharger speed data, will not only benefit engine and turbocharger performance but also improve control, allow for advanced diagnostics and enable the possibility to virtualize other powertrain sensors (e.g. mass air flow and exhaust gas temperature sensors). The resulting optimized engine efficiency will equate with lower emissions, fuel savings and increased reliability.
Recommended Content
Technical Paper | Development of the New THS-II Powertrain for Compact Vehicles |
Technical Paper | Virtual Engine, Controls, and Calibration Development in Automated Co-Simulation Environment |
Technical Paper | Automotive Engine Control Sensors’80 |
Authors
Citation
Tigelaar, J., Jaquet, K., Cox, D., and Peter, A., "Utilization of Turbocharger Speed Data to Increase Engine Power and Improve Air Path Control Strategy and Diagnostics," SAE Technical Paper 2017-01-1068, 2017, https://doi.org/10.4271/2017-01-1068.Also In
References
- SCOLTOCK, J. “Alfred Büchi the inventor of the turbocharger” Automotive Engineer, Caspian Media http://ae-plus.com/milestones/alfred-bchi-the-inventor-of-the-turbocharger, Retrieved June 7, 2016
- Downsized car engines: The incredible shrinking machine The Economist (2015, Dec 12th)http://www.economist.com/news/science-and-technology/21679767-internal-combustion-engines-are-getting-smaller-more-economical-and-cleanerall, Retrieved June 7, 2016
- https://turbo.honeywell.com/whats-new-in-turbo/press-release/honeywells-2015-turbocharger-forecast-signals-increased-expectations-of-turbo-technology-as-global-penetration-nears-50-percent-by-2020/ Retrieved June 7, 2016
- http://honeywell.com/SiteCollectionDocuments/Global%20Turbo%20Forecast%20Infographic.jpg Retrieved, June 7, 2016
- Pachner, D., Lansky, L., Germann, D., and Eigenmann, M., "Fitting Turbocharger Maps with Multidimensional Rational Functions," SAE Technical Paper 2015-01-1719, 2015, doi:10.4271/2015-01-1719.
- BERNHARDT, S. 2014. Ladungswechselrechnung. In: VAN BASSHUYSEN, Richard & SCHÄFER, Fred, Hrsg. Handbuch Verbrennungsmotor. Grundlagen, Komponenten, Systeme, Perspektiven. Wiesbaden: Springer Vlg, p. 488-490.
- VARNIER, O. (Jaguar Land Rover) “Next Generation Charging concepts for Diesel Engines” Advanced Downsizing & Turbochargering Conference 2016, Stuttgart, Germany (March 9th 2016).
- DROZDOWSKI, R. 2011. Berechnung der Schwingbeanspruchungen in Radialturbinenrädern unter Berücksichtigung realer Bauteilgeometrien. Fakultät Maschinenwesen. TECHNISCHE UNIVERSITÄT DRESDEN.
- HANNA, D. et al. 2010. Steuerstrategie für das Verringern von Resonanz in einem Turbolader. DE201010032510.
- DECOSTER, G. Sensoren im Kraftfahrzeug. ZENTRUM FÜR AUS- UND WEITERBILDUNG DES MITTELSTANDES ZAWM. http://ww.zawm.de/Technik-Profi/Sensoren.pdf. (April 3rd 2016)
- ROBERT BOSCH GMBH. 2013. Hot-film mass air-flow sensor [Product Data Sheet]. Stuttgart.
- Moraal, P. and Kolmanovsky, I., "Turbocharger Modeling for Automotive Control Applications," SAE Technical Paper 1999-01-0908, 1999, doi:10.4271/1999-01-0908.
- PETROVIC, S. 2014. Verfahren und Vorrichtung zur Bestimmung eines Ladeluftmassenstroms. DE102014201947.
- PETROVIC S. 2015. Method and device for determining a charge air mass flow rate US3015/0219052A1
- DOLLMAYER, T et al. 2012. Method for controlling turbine outlet temperatures in a Diesel engine. US8322129B2
- WIE, Haiqiao et al. 2012. Gasoline engine exhaust gas recirculation - a review. Applied Energy 99:534-544, November 2012
- PETROVIC, S. 2012. Abgasrückführungssystem und Verfahren zur Abgasrückführung. DE201210200055.
- MACIÁN, V. et al. 2004. Exhaust pressure pulsation observation from turbocharger instantaneous speed measurement. Measurement Science and Technology, 2004 (15), p. 1185-1194.
- ULLRICH, J. et al. 2016. Technologies for (pilot) injection quantity control in modern common rail Diesel engines. Baden-Baden. February 24th, 2016.