This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
An Insight on the Spray-A Combustion Characteristics by Means of RANS and LES Simulations Using Flamelet-Based Combustion Models
Technical Paper
2017-01-0577
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Advanced Computational Fluid Dynamics (CFD) modeling of reacting sprays provides access to information not available even applying the most advanced experimental techniques. This is particularly evident if the combustion model handles detailed chemical kinetic models efficiently to describe the fuel auto-ignition and oxidation processes. Complex chemistry also provides the temporal evolution of key species closely related to emissions formation, such as polycyclic aromatic hydrocarbons (PAHs) that are well-known as soot precursors. In this framework, present investigation focuses on the analysis of the so-called Spray-A combustion characteristics using two different flamelet-based combustion models. Both Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES) predictions are combined to study not only the averaged spray characteristics, but also the relevance of different realizations in this particular problem. The discussion includes an evaluation of the performance of the models to predict the most relevant reacting spray macro-parameters: ignition delay and lift-off length (LOL). This is followed by the description of the temporal evolution and localization of key species during auto-ignition and flame stabilization in spatial coordinates and in the mixture fraction-progress variable space. The internal structure of the quasi-steady flame is also discussed so that the localization of key species, including PAHs, is investigated following a similar approach. Finally, the study is completed by analyzing the sensitivity of the results to the chemical mechanism and to the boundary conditions imposed for the applied manifold generation. Preliminary results show how the two models predict the auto-ignition and combustion onset in slightly rich conditions. Additionally, differences in LOL reflect on the structure of the establishing flame, so the proper prediction of the spray mixing field and the LOL is mandatory to model chemical species, especially PAHs. Dispersion effects observed analyzing different realizations are of second order for Spray-A reference conditions. Finally, it is found that the results are sensitive to chemical mechanism and evaporation must be taken into account in the simulation of the flamelets that determine the manifold.
Recommended Content
Technical Paper | Large-Eddy Simulation and Analysis of Turbulent Flows in a Motored Spark-Ignition Engine |
Technical Paper | CFD-Aided Design of an Airbox for Race Cars |
Authors
- Bersan Akkurt - Eindhoven University of Technology
- Hayri Yigit Akargun - Eindhoven University of Technology
- L. M. T. Somers - Eindhoven University of Technology
- N. G. Deen - Eindhoven University of Technology
- Ricardo Novella - Universitat Politecnica de Valencia
- Eduardo Javier Pérez-Sánchez - Universitat Politecnica de Valencia
Citation
Akkurt, B., Akargun, H., Somers, L., Deen, N. et al., "An Insight on the Spray-A Combustion Characteristics by Means of RANS and LES Simulations Using Flamelet-Based Combustion Models," SAE Technical Paper 2017-01-0577, 2017, https://doi.org/10.4271/2017-01-0577.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 |
Also In
References
- Pickett , L. M. and Siebers , D. L. Soot in Diesel Fuel Jets: Effects of Ambient Temperature, Ambient Density, and Injection Pressure Combust. Flame 138 1 114 135 2004
- Benajes , J. , Payri , R. , Bardi , M. and Martí-Aldaraví , P. Experimental Characterization of Diesel Ignition and Lift-Off Length using a Single-Hole ECN Injector Applied Thermal Engineering 58 1 554 563 2013
- Bolla , M. , Gudmundsson , T. , Wright , Y. , and Boulouchos , K. Simulations of Diesel Sprays Using the Conditional Moment Closure Model SAE Int. J. Engines 6 2 1249 1261 2013 10.4271/2013-01-1618
- D'Errico , G. , Lucchini , T. , Contino , F. , Jangi , M. , and Bai , X. S. Comparison of Well-mixed and Multiple Representative Interactive Flamelet Approaches for Diesel Spray Combustion Modelling Combustion Theory and Modelling 18 1 65 88 2014
- Knop , V. , Michel , J. B. , and Colin , O. On the use of a Tabulation Approach to Model Auto-Ignition During Flame Propagation in SI Engines Applied Energy 88 12 4968 4979 2011
- Bajaj , C. , Ameen , M. , and Abraham , J. Evaluation of an Unsteady Flamelet Progress Variable Model for Auto-ignition and Flame Lift-off in Diesel Jets Combustion Science and Technology 185 3 454 472 2013
- Dhuchakallaya , I. , Rattanadecho , P. , and Watkins , P. Auto-Ignition and Combustion of Diesel Spray using Unsteady Laminar Flamelet Model Applied Thermal Engineering 52 2 420 427 2013
- Peters , N. Turbulent combustion Cambridge University Press Cambridge 9780511612701 2000
- Poinsot , T. , and Veynante , D. Theoretical and numerical combustion R. T. Edwards Inc. 978-1930217102 2005
- Barths , H. , Hasse , C. , Bikas , G. and Peters , N. Simulation of Combustion in Direct Injection Diesel Engines using an Eulerian Particle Flamelet Model Proc. Combust. Inst. 28 1 1161 1168 2000
- Tillou , J. , Michel , J. B. , Angelberger , C. , Bekdemir , C. and Veynante , D. Large-Eddy Simulation of Diesel Spray Combustion with Exhaust Gas Recirculation Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles 69 1 155 165 2014
- Michel , J. B. , and Colin , O. A Tabulated Diffusion Flame Model Applied to Diesel Engine Simulations International Journal of Engine Research 15 346 369 2013 10.1177/1468087413488590
- Bazdidi-Tehrani , F. and Zeinivand , H. Presumed PDF Modeling of Reactive Two-Phase Flow in a Three Dimensional Jet-Stabilized Model Combustor Energy Conversion and Management 51 1 225 234 2010
- Naud , B. , Novella , R. , Pastor , J. M. and Winklinger , J. F. RANS Modelling of a Lifted H2/N2 Flame using an Unsteady Flamelet Progress Variable Approach with Presumed PDF Combust. Flame 162 4 893 906 2015
- Pickett , L.M. 2012b Engine Combustion Network (ECN) data archive https://ecn.sandia.gov/diesel-spray-combustion/experimental-data-search/ August 2016
- Bardi , M. , Payri , R. , Malbec , L. M. , Bruneaux , G. , Pickett , L. M. , Manin , J. , Bazyn , T. and Genzale , C. L. Engine Combustion Network: Comparison of Spray Development, Vaporization, and Combustion in Different Combustion Vessels Atomization and Sprays 22 10 807 842 2012 10.1615/AtomizSpr.2013005837
- Lucchini , T. , D’Errico , G. , Ettorre , D. , and Ferrari , G. Numerical Investigation of Non-Reacting and Reacting Diesel Sprays in Constant-Volume Vessels SAE Int. J. Fuels Lubr. 2 1 966 975 2009 10.4271/2009-01-1971
- Oijen , v., J. and Donini , A. Implementation of the FGM Method Mechanical Engineering Department, Eindhoven University of Technology 2015
- Bekdemir , C. , Somers , L. M. T. and Goey, de L. P. H. Numerical Modeling of Diesel Spray Formation and Combustion Presented at In Proceedings of the 4th European Combustion Meeting Austria April 14-17, 2009
- Bekdemir , C. , Somers , L. M. T. and de Goey , L. P. H. Modeling Diesel Engine Combustion using Pressure Dependent Flamelet Generated Manifolds Proc. Combust. Inst. 33 2 2887 2894 2010
- Goey , d., L. P. H. and Thije Boonkkamp , J. H. M. A Flamelet Description of Premixed Laminar Flames and the Relation with Flame Stretch Combust. Flame 119 3 253 271 1999
- Oijen , v., J. , Goey , d., L.P.H. and Steenhoven , v., A. A. Flemelet-Generated Manifolds: Development and Application to Premixed Laminar Flames Ph.D. thesis Mechanical Engineering Department, Eindhoven University of Technology 2002
- Mastorakos , E. Ignition of Turbulent Non-Premixed Flames Prog. Energy Combust. Sci. 35 57 97 2009
- Bekdemir , C. , Goey , d., L.P.H. and Somers , L. M. T. Tabulated Chemical Kinetics for Efficient and Detailed Simulations of Diesel Engine Combustion Ph.D. thesis Mechanical Engineering Department, Eindhoven University of Technology 2012
- Somers , L. M. T. , Nieuwenhuizen , J. K. , Brouwers , J. J. H. and Goey , d., L.P.H. The Simulation of Flat Flames with Detailed and Reduced Chemical Models Ph.D. thesis Mechanical Engineering Department, Eindhoven University of Technology 1994
- Narayanaswamy , K. , Pepiot , P. and Pitsch , H. A chemical mechanism for low to high temperature oxidation of n-dodecane as a component of transportation fuel surrogates Combust. Flame 161 4 866 884 2013
- Hall , J. M. and Petersen , E. L. An Optimized Kinetics Model for OH Chemiluminescence at High Temperatures and Atmospheric Pressures Int. J. Chem. Kinet. 38 714 724 2006 10.1002/kin.20169
- Yao , T. et al A Hybrid Mechanism for n-Dodecane Combustion with Optimized Low-Temperature Chemistry Presented at 9th U.S. National Combustion Meeting USA May 17-20, 2015
- Hawkes , E. Chemistry Effects on Ignition Presented at Fourth Workshop of the Engine Combustion Network (ECN 4) Japan September 6, 2015
- Bilger , R. W. and Starber , S.H. On Reduced Mechanisms for Methane-Air Combustion in Nonpremixed Flames Combust. Flame 80 135 149 1990
- Michel , J. B. , Colin , O. , and Veynante , D. Modeling Ignition and Chemical Structure of Partially Premixed Turbulent Flames using Tabulated Chemistry Combust. Flame 152 1 80 99 2008
- CHEMKIN-PRO Reaction Design San Diego 2008
- Pickett , L. , Genzale , C. , Bruneaux , G. , Malbec , L. et al. Comparison of Diesel Spray Combustion in Different High-Temperature, High-Pressure Facilities SAE Int. J. Engines 3 2 156 181 2010 10.4271/2010-01-2106
- Lucchini , T. et al Comprehensive Validation of OpenFOAM Based Libraries for IC Engine Simulations with ECN Test Cases https://imem.cray.com/2015/Meeting-2015/9-polimi-ECN.pdf 2015
- Beale , J. and Reitz , R. Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model Atomization and Sprays 9 6 623 650 1999
- Baumgarten , C. Mixture Formation in Internal Combustion Engines Springer Berlin 978-3-540-30835-5 2006
- Moureau , V. , Lartigue , G. , Sommerer , Y. , Angelberger , C. , Colin , O. , and Poinsot , T. Numerical Methods for Unsteady Compressible Multi-Component Reacting Flows on Fixed and Moving Grids J. Comput. Phys. 202 2 710 736 2005
- Martinez , L. , Benkenida , A. , Cuenot , B. A Model for the Injection Boundary Conditions in the Context of 3D Simulation of Diesel Spray: Methodology and validation Fuel 89 219 228 2010
- Rosseel , E. and Sierens , R. The Physical and the Chemical Part of the Ignition Delay in Diesel Engines SAE Technical Paper 961123 1996 10.4271/961123
- Frassoldati , A. , D'Errico , G. , Lucchini , T. et al Reduced Kinetic Mechanisms of Diesel Fuel Surrogate for Engine CFD Simulations Combust. Flame 162 10 3991 4007 2015
- Skeen , S. A. , Manin , J. , and Pickett , L. M. Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames Proc. Combust. Inst. 35 3 3167 3174 2015
- Idicheria , C. and Pickett , L. Formaldehyde Visualization Near Lift-off Location in a Diesel Jet SAE Technical Paper 2006-01-3434 2006 10.4271/2006-01-3434
- Logan , S.R. The Origin and Status of the Arrhenius Equation Journal of Chemical Education 59 4 279 1982 10.1021/ed059p279
- Frenklach , M. Reaction Mechanism of Soot Formation in Flames Phys. Chem. Chem. Phys. 4 2028 2037 2002
- Kazakov , A. and Foster , D. Modeling of Soot Formation During DI Diesel Combustion Using a Multi-Step Phenomenological Model SAE Technical Paper 982463 1998 10.4271/982463
- Pei , Y. , Som , S. , Kundu , P. , and Goldin , G. Large Eddy Simulation of a Reacting Spray Flame under Diesel Engine Conditions SAE Technical Paper 2015-01-1844 2015 10.4271/2015-01-1844
- Ameen , M. , Pei , Y. , and Som , S. Computing Statistical Averages from Large Eddy Simulation of Spray Flames SAE Technical Paper 2016-01-0585 2016 10.4271/2016-01-0585
- Siebers , D. and Higgins , B. Flame Lift-Off on Direct-Injection Diesel Sprays Under Quiescent Conditions SAE Technical Paper 2001-01-0530 2001 10.4271/2001-01-0530