This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Assessment of Large-Eddy Simulations of Turbulent Round Jets Using Low-Order Numerical Schemes

Journal Article
2017-01-0575
ISSN: 1946-391X, e-ISSN: 1946-3928
Published March 28, 2017 by SAE International in United States
Assessment of Large-Eddy Simulations of Turbulent Round Jets Using Low-Order Numerical Schemes
Sector:
Citation: Wang, Z., Ameen, M., Som, S., and Abraham, J., "Assessment of Large-Eddy Simulations of Turbulent Round Jets Using Low-Order Numerical Schemes," SAE Int. J. Commer. Veh. 10(2):572-581, 2017, https://doi.org/10.4271/2017-01-0575.
Language: English

References

  1. Rutland , C. J. Large-eddy simulations for internal combustion engines - a review Int. J. Eng. Res. 12 5 421 451 2011
  2. Selle , L. , Lartigue , G. , Poinsot , T. , Koch , R. , Schildmacher , K.-U. , Krebs , W. , Prade , B. , Kaufmann , P. , and Veynante , D. Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes Combust. Flame 137 4 489 505 2004
  3. Ghosal , S. An analysis of numerical errors in large-eddy simulations of turbulence J. Comput. Phys. 125 1 187 206 1996
  4. Morinishi , Y. , Lund , T. S. , Vasilyev , O. V. , and Moin , P. Fully conservative higher order finite difference schemes for incompressible flow J. Comput. Phys. 143 1 90 124 1998
  5. Gullbrand , J. , and Chow , F. K. The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering J. Fluid Mech. 495 323 341 2003
  6. Tsang , C. and Rutland , C. Effects of Numerical Schemes on Large Eddy Simulation of Turbulent Planar Gas Jet and Diesel Spray SAE Int. J. Fuels Lubr. 9 1 149 164 2016 10.4271/2016-01-0866
  7. Richards , K. J. , Senecal , P. K. , and Pomraning , E. CONVERGE (v2.3) Convergent Science, Inc. Madison, WI 2016
  8. Kodavasal , J. , Kolodziej , C. P. , Ciatti , S. A. , and Som , S. Computational Fluid Dynamics Simulation of Gasoline Compression Ignition J. Energy Resour. Technol. 137 3 032212 2015
  9. Senecal , P. K. , Pomraning , E. , Anders , J. , Weber , M. , Gehrke , C. , Polonowski , C. , and Mueller , C. Predictions of Transient Flame Lift-off Length With Comparison to Single-Cylinder Optical Engine Experiments J. Eng. Gas Turb. Power 136 11 111505 2014
  10. Mukhopadhyay , S. , and Abraham , J. Influence of compositional stratification on autoignition in n-heptane/air mixtures Combust. Flame 158 6 1064 1075 2011
  11. Ameen , M. , and Abraham , J. A priori evaluation of subgrid-scale combustion models for diesel engine applications Fuel 153 612 619 2015
  12. Ameen , M. M. , and Abraham , J. Are “2D DNS” results of turbulent fuel/air mixing layers useful for assessing subgrid-scale models? Numer Heat Tr. A-Appl. 69 1 1 13 2016
  13. Anders , J. , Magi , V. , and Abraham , J. Large-eddy simulation in the near-field of a transient multi-component gas jet with density gradients Comput. Fluids 36 10 1609 1620 2007
  14. Ameen , M. and Abraham , J. RANS and LES Study of Lift-Off Physics in Reacting Diesel Jets SAE Technical Paper 2014-01-1118 2014 10.4271/2014-01-1118
  15. Ball , C. , Fellouah , H. , and Pollard , A. The flow field in turbulent round free jets Prog. Aerosp. Sci. 50 1 26 2012
  16. Lele , S. K. Compact finite difference schemes with spectral-like resolution J. Comput. Phys. 103 1 16 42 1992
  17. Gill , S. A process for the step-by-step integration of differential equations in an automatic digital computing machine Math. Proc Cambridge 47 1 96 108 1951
  18. Poinsot , T. J. , and Lele , S. K. Boundary conditions for direct simulations of compressible viscous flows J. Comput. Phys. 101 1 104 129 1992
  19. Venugopal , R. , and Abraham , J. A 2-D DNS investigation of extinction and reignition dynamics in nonpremixed flame-vortex interactions Combust. Flame 153 3 442 464 2008
  20. Senecal , P. K. , Pomraning , E. , Xue , Q. , Som , S. , Banerjee , S. , Hu , B. , Liu , K. , and Deur , J. Large Eddy simulation of vaporizing sprays considering multi-injection averaging and grid-convergent mesh resolution J. Eng. Gas Turb. Power 136 11 111504 2014
  21. Pei , Y. , Som , S. , Pomraning , E. , Senecal , P. K. , Skeen , S. A. , Manin , J. , and Pickett , L. M. Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions Combust. Flame 162 12 4442 4455 2015
  22. Ameen , M. M. , Yang , X. , Kuo , T.-W. , Xue , Q. , and Som , S. LES for Simulating the Gas Exchange Process in a Spark Ignition Engine Proc. ASME 2015 Int. Combust. Eng. Div. Fall Tech. Conf. 2015
  23. Bogey , C. , Bailly , C. , and Juvé , D. Noise investigation of a high subsonic, moderate Reynolds number jet using a compressible large eddy simulation Theor. Comp. Fluid Dyn. 16 4 273 297 2003
  24. Moin , P. , Squires , K. , Cabot , W. , and Lee , S. A dynamic subgrid-scale model for compressible turbulence and scalar transport Phys. Fluids A-Fluid 3 11 2746 2757 1991
  25. Pomraning , E. , and Rutland , C. J. Dynamic One-Equation Nonviscosity Large-Eddy Simulation Model AIAA Journal 40 4 689 701 2002
  26. Tieszen , S. R. , Stamps , D. W. , and O'Hern , T. J. A heuristic model of turbulent mixing applied to blowout of turbulent jet diffusion flames Combust. Flame 106 4 442 466 1996
  27. Hussein , H. J. , Capp , S. P. , and George , W. K. Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet J. Fluid Mech. 258 31 75 1994
  28. Ahmed , S. , and Mastorakos , E. Spark ignition of lifted turbulent jet flames Combust. Flame 146 1 215 231 2006
  29. Ameen , M. M. Unsteady flamelet progress variable modeling of reacting diesel jets PhD dissertation Purdue University 2014
  30. Kyle , D. , and Sreenivasan , K. 1993 The instability and breakdown of a round variable-density jet J. Fluid Mech. 249 619 664 1993

Cited By