This content is not included in your SAE MOBILUS subscription, or you are not logged in.

CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel

Journal Article
2017-01-0550
ISSN: 1946-391X, e-ISSN: 1946-3928
Published March 28, 2017 by SAE International in United States
CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel
Sector:
Citation: Pei, Y., Zhang, Y., Kumar, P., Traver, M. et al., "CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel," SAE Int. J. Commer. Veh. 10(2):532-546, 2017, https://doi.org/10.4271/2017-01-0550.
Language: English

References

  1. OPEC 2014 World Oil Outlook Organization of the Petroleum Exporting Countries (OPEC) Vienna, Austria 2014
  2. Kalghatgi , G. , Risberg , P. , and Ångström , H. Advantages of Fuels with High Resistance to Auto-ignition in Late-injection, Low-temperature, Compression Ignition Combustion SAE Technical Paper 2006-01-3385 2006 10.4271/2006-01-3385
  3. Kalghatgi , G. , Risberg , P. , and Ångström , H. Partially Pre-Mixed Auto-Ignition of Gasoline to Attain Low Smoke and Low NOx at High Load in a Compression Ignition Engine and Comparison with a Diesel Fuel SAE Technical Paper 2007-01-0006 2007 10.4271/2007-01-0006
  4. Kalghatgi , G. , Hildingsson , L. , and Johansson , B. Low NOx and Low Smoke Operation of a Diesel Engine Using Gasoline-Like Fuels J. Eng. Gas Turbines Power 132 9 092803 2009 10.1115/1.4000602
  5. Zhang , Y. , Voice , A. , Tzanetakis , T. , Traver , M. et al. An Evaluation of Combustion and Emissions Performance with Low Cetane Naphtha Fuels in a Multi-cylinder Heavy-Duty Diesel Engine J. Eng. Gas Turbines Power 138 10 102805 2016 10.1115/1.4032879
  6. Zhang , Y. , Kumar , P. , Traver , M. , and Cleary , D. Conventional and Low Temperature Combustion Using Naphtha Fuels in a Multi-Cylinder Heavy-Duty Diesel Engine SAE Int. J. Engines 9 2 1021 1035 2016 10.4271/2016-01-0764
  7. Akihama , K. , Kosaka , H. , Hotta , Y. , Nishikawa , K. et al. An Investigation of High Load (Compression Ignition) Operation of the “Naphtha Engine” - a Combustion Strategy for Low Well-to-Wheel CO2 Emissions SAE Int. J. Fuels Lubr. 1 1 920 932 2009 10.4271/2008-01-1599
  8. Rose , K. , Cracknell , R. , Rickeard , D. , Ariztegui , J. et al. Impact of Fuel Properties on Advanced Combustion Performance in a Diesel Bench Engine and Demonstrator Vehicle SAE Technical Paper 2010-01-0334 2010 10.4271/2010-01-0334
  9. Chang , J. , Kalghatgi , G. , Amer , A. , and Viollet , Y. Enabling High Efficiency Direct Injection Engine with Naphtha Fuel through Partially Premixed Charge Compression Ignition Combustion SAE Technical Paper 2012-01-0677 2012 10.4271/2012-01-0677
  10. Chang , J. , Kalghatgi , G. , Amer , A. , Adomeit , P. et al. Vehicle Demonstration of Naphtha Fuel Achieving Both High Efficiency and Drivability with EURO6 Engine-Out NOx Emission SAE Int. J. Engines 6 1 101 119 2013 10.4271/2013-01-0267
  11. Leermakers , C. , Bakker , P. , Somers , L. , de Goey , L. et al. Commercial Naphtha Blends for Partially Premixed Combustion SAE Int. J. Fuels Lubr. 6 1 199 216 2013 10.4271/2013-01-1681
  12. Viollet , Y. , Chang , J. , and Kalghatgi , G. Compression Ratio and Derived Cetane Number Effects on Gasoline Compression Ignition Engine Running with Naphtha Fuels SAE Int. J. Fuels Lubr. 7 2 412 426 2014 10.4271/2014-01-1301
  13. Senecal , P. and Reitz , R. Simultaneous Reduction of Engine Emissions and Fuel Consumption Using Genetic Algorithms and Multi-Dimensional Spray and Combustion Modeling SAE Technical Paper 2000-01-1890 2000 10.4271/2000-01-1890
  14. Probst , D.M. , Senecal , P.K. , Qian , P.Z. , Xu , M.X. and Leyde , B.P. Optimization and Uncertainty Analysis of a Diesel Engine Operating Point Using CFD Proceedings of the ASME 2016 Internal Combustion Engine Division Fall Technical Conference, ICEF2016-9345 Greenville, SC October 2016
  15. CONVERGE Theory Manual v2.3.8 Convergent Science, Inc. Middleton, WI 2013
  16. Senecal , P. , Pomraning , E. , Richards , K. , Briggs , T. et al. Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-off Length using CFD and Parallel Detailed Chemistry SAE Technical Paper 2003-01-1043 2003 10.4271/2003-01-1043
  17. Pei , Y. , Som , S. , Pomraning , E. , Senecal , P.K. et al. Large Eddy Simulation of a Reacting Spray Flame with Multiple Realizations under Compression Ignition Engine Conditions Combust. Flame 162 12 4442 4455 2015 10.1016/j.combustflame.2015.08.010
  18. Battistoni , M. , Xue , Q. , Som , S. , and Pomraning , E. Effect of Off-Axis Needle Motion on Internal Nozzle and Near Exit Flow in a Multi-Hole Diesel Injector SAE Int. J. Fuels Lubr. 7 1 167 182 2014 10.4271/2014-01-1426
  19. Quan , S. , Senecal , P.K. , Pomraning , E. , Xue , Q. et al. A One-Way Coupled Volume of Fluid and Eulerian-Lagrangian Method for Simulating Sprays Proceedings of the ASME 2016 Internal Combustion Engine Division Fall Technical Conference, ICEF2016-9390 Greenville, SC October 2016
  20. Reitz , R.D. Modeling Atomization Processes in High Pressure Vaporizing Sprays Atomization Spray Technol. 3 309 337 1987
  21. Patterson , M. and Reitz , R. Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission SAE Technical Paper 980131 1998 10.4271/980131
  22. Schmidt , D.P. and Rutland , C.J. A New Droplet Collision Algorithm J. Comput. Phys. 164 1 62 80 2000 10.1006/jcph.2000.6568
  23. Frossling , N. Evaporation, Heat Transfer, and Velocity Distribution in Two-Dimensional and Rotationally Symmetrical Laminar Boundary-Layer Flow N.A.C.A. 168:AD-B189 1956
  24. Aspen HYSYS http://www.aspentech.com/products/aspen-hysys/ 2016
  25. Pei , Y. , Hawkes , E.R. , Kook , S. , Goldin , G.M. et al. Modelling n-Dodecane Spray and Combustion with the Transported Probability Density Function Method Combust. Flame 162 5 2006 2019 2015 10.1016/j.combustflame.2014.12.019
  26. Bhattacharjee , S. and Haworth , D.C. Simulations of Transient n-Heptane and n-Dodecane Spray Flames under Engine-Relevant Conditions Using a Transported PDF Method Combust. Flame 160 10 2083 2102 2013 10.1016/j.combustflame.2013.05.003
  27. D’Errico , G. , Lucchini , T. , Contino , F. , Jangi , M. et al. Comparison of Well-Mixed and Multiple Representative Interactive Flamelet Approaches for Diesel Spray Combustion Modelling Combust. Theor. Modell. 18 1 65 88 2014 10.1080/13647830.2013.860238
  28. Kundu , P. , Pei , Y. , Wang , M. , Mandhapati , R. et al. Evaluation of Turbulence-Chemistry Interaction under Diesel Engine Conditions with Multi-Flamelet RIF Model Atomizat. Sprays 24 9 779 800 2014 10.1615/AtomizSpr.2014010506
  29. Pei , Y. , Hawkes , E.R. , Kook , S. Transported Probability Density Function Modelling of the Vapour Phase of an n-Heptane Jet at Diesel Engine Conditions Proc. Combust. Inst. 34 2 3039 3047 2013 10.1016/j.proci.2012.07.033
  30. Liu , Y. , Jia , M. , Xie , M. , and Pang , B. Enhancement on a Skeletal Kinetic Model for Primary Reference Fuel Oxidation by Using a Semidecoupling Methodology Energy Fuels 26 12 7069 7083 2012 10.1021/ef301242b
  31. Golovitchev , V. , Nordin , N. , Jarnicki , R. , and Chomiak , J. 3-D Diesel Spray Simulations Using a New Detailed Chemistry Turbulent Combustion Model SAE Technical Paper 2000-01-1891 2000 10.4271/2000-01-1891
  32. Hiroyasu , H. and Kadota , T. Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines SAE Technical Paper 760129 1976 10.4271/760129
  33. Kazakov , A. , and Frenklach , M. Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation With the Method of Moments and Application to High-Pressure Laminar Premixed Flames Combust. Flame 114 484 501 1998 10.1016/S0010-2180(97)00322-2
  34. Wen , J.Z. , Thomson , M.J. , Park , S.H. , Rogak , S.N. et al. Study of Soot Growth in a Plug Flow Reactor Using a Moving Sectional Model Proc. Combust. Inst. 30 1477 1484 2005 10.1016/j.proci.2004.08.178
  35. Golovitchev , V. http://www.tfd.chalmers.se/~valeri/MECH.html
  36. Kodavasal , J. , Pei , Y. , Harms , K. , Ciatti , S. et al. Global Sensitivity Analysis of a Gasoline Compression Ignition Engine Simulation with Multiple Targets on an IBM Blue Gene/Q Supercomputer SAE Technical Paper 2016-01-0602 2016 10.4271/2016-01-0602
  37. Skeen , S.A. , Manin , J. and Pickett , L.M. Simultaneous Formaldehyde PLIF and High-Speed Schlieren Imaging for Ignition Visualization in High-Pressure Spray Flames Proc. Combust. Inst. 35 3 3167 3174 2015 10.1016/j.proci.2014.06.040
  38. Skeen , S. , Manin , J. , and Pickett , L. Visualization of Ignition Processes in High-Pressure Sprays with Multiple Injections of n-Dodecane SAE Int. J. Engines 8 2 696 715 2015 10.4271/2015-01-0799
  39. Pei , Y. , Hawkes , E.R. , Bolla , M. , Kook , S. et al. An Analysis of the Structure of an n-Dodecane Spray Flame Using TPDF Modelling Combust. Flame 168 420 435 2016 10.1016/j.combustflame.2015.11.034

Cited By