This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Corrected Surrogate Model Based Multidisciplinary Design Optimization Method under Uncertainty

Journal Article
2017-01-0256
ISSN: 1946-391X, e-ISSN: 1946-3928
Published March 28, 2017 by SAE International in United States
A Corrected Surrogate Model Based Multidisciplinary Design Optimization Method under Uncertainty
Sector:
Citation: Wu, X., Fang, Y., Zhan, Z., Liu, X. et al., "A Corrected Surrogate Model Based Multidisciplinary Design Optimization Method under Uncertainty," SAE Int. J. Commer. Veh. 10(1):106-112, 2017, https://doi.org/10.4271/2017-01-0256.
Language: English

References

  1. Kasarekar N., English K., (2004). Development of a Hybrid MDF/IDF Multidisciplinary Optimization Solution Method with Coupling Suspension. Aiaa/issmo Multidisciplinary Analysis and Optimization Conference.
  2. Ling H., Cheng Y., Liu J., Zeng G., (2011). An improved multidiscipline collaborative optimization algorithm and its application in submarine subdivision. Shipbuilding of China, 52(2), 87–99.
  3. Kodiyalam S., Sobieszczanski-Sobieski J., (2000). Bilevel integrated system synthesis with response surfaces. AIAA journal, 38(8), 1479–1485.
  4. Yang R J., Gu L., Tho C H., , (2001). Multidisciplinary design optimization of a full vehicle with high performance computing. AIAA paper, 1273:2001.
  5. Chuang C H., Yang R J., Li G., , (2008). Multidisciplinary design optimization on vehicle tailor rolled blank design. Structural and Multidisciplinary Optimization, 35(6):551–560.
  6. Xu, H., Chuang, C., and Yang, R., "A Data Mining-Based Strategy for Direct Multidisciplinary Optimization,"SAE Int. J. Mater. Manf. 8(2):357–363, 2015, doi:10.4271/2015-01-0479.
  7. Yang R J., Akkerman A., Anderson D F., Faruque O M., Gu L., (2000). Robustness optimization for vehicular crash simulations. Computing in Science & Engineering, 2(6), 8–13.
  8. Yang J., Zhan Z., Zheng K., (2016). An uncertainty representation based sampling method for metamodeling. Journal of Mechanical Science and Technology 30 (10) (2016) 4645~4655 Vol. 48, Iss. 12.
  9. Xu, H., Majcher, M., Chuang, C., Fu, Y., "Comparative Benchmark Studies of Response Surface Model-Based Optimization and Direct Multidisciplinary Design Optimization,"SAE Technical Paper 2014-01-0400, 2014, doi:10.4271/2014-01-0400.
  10. Zhan, Z., Fu, Y., Yang, R., Xi, Z., "A Bayesian Inference based Model Interpolation and Extrapolation,"SAE Int. J. Mater. Manf. 5(2):357–364, 2012, doi:10.4271/2012-01-0223.
  11. Kai, Z., Hu J., Peng Y., Zhan Z., Jin Q. (2012). A bayesian inference method for model extrapolation together with qualitative knowledge. Journal of Shanghai Jiaotong University, 46(6), 994–998.
  12. Yang J., Zhan Z., Zheng K., Hu J., Zheng L., (2016). Enhanced similarity-based metamodel updating strategy for reliability-based design optimization in auto-motive design applications, Engineering Optimization, doi:10.1080/0305215X.2016.1150469
  13. Zhan Z., Fu Y., Yang R J., (2014). A stochastic bias corrected response surface method and its application to reliability-based design optimization. Finite Element Analysis, 7(2), 262–268.
  14. Jiang, Z., Chen, W., Fu, Y., and Yang, R., "Reliability-Based Design Optimization with Model Bias and Data Uncertainty,"SAE Int. J. Mater. Manf. 6(3):502–516, 2013, doi:10.4271/2013-01-1384.
  15. Li W., Chen S., Jiang Z., Apley DW., Lu Z., Chen W., (2014). Integrating Bayesian Calibration, Bias Correction, and Machine Learning for the 2014 Sandia Verification and Validation Challenge Problem. ASME. J. Verif. Valid. Uncert. 2014; 1(1):011004-011004-12. doi:10.1115/1.4031983.
  16. Xi, Z., Fu, Y., and Yang, R., "An Ensemble Approach for Model Bias Prediction,"SAE Int. J. Mater. Manf. 6(3):532–539, 2013, doi:10.4271/2013-01-1387.
  17. Xi Z., Yang R J., (2014). Reliability analysis with model uncertainty coupling with parameter and experiment uncertainties: a case study of 2014 v&v challenge problem.
  18. Pan H., Xi Z., Yang R J., (2016). Model uncertainty approximation using a copula-based approach for reliability based design optimization. Structural & Multidisciplinary Optimization, 1– 14.
  19. Xu, H., Chuang, C., and Yang, R., "Towards Optimization of Multi-material Structure: Metamodeling of Mixed-Variable Problems,"SAE Int. J. Mater. Manf. 9(2):400–409, 2016, doi:10.4271/2016-01-0302.
  20. Arendt PD., Apley DW., Chen W., (2012). Quantification of model uncertainty: Calibration, model discrepancy, and identifiability. Journal of Mechanical Design, 134(10), 100908.
  21. Zhan Z., Fu Y., Yang R J., Peng Y., (2012). Bayesian based multivariate model validation method under uncertainty for dynamic systems. Journal of Mechanical Design, 134(3), 310–311.
  22. Sankararaman S., Mahadevan S., (2015). Integration of model verification, validation, and calibration for uncertainty quantification in engineering systems. Reliability Engineering & System Safety, 138(7):194–209.
  23. Zhang Y., Li G., Zhong Z., (2009). Application of Thin-walled Beam Lightweight Based on Reliability of Muliti-disciplinary Design Optimization. China Mechanical Engineering (15), 1885–1889.
  24. Cui J., (2011). Robustness optimization for crash safety based on dual-response surface model. Journal of Mechanical Engineering, 47(24), 97–103.

Cited By