This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Off-Road Tire-Terrain Interaction: An Analytical Solution

Journal Article
ISSN: 1946-391X, e-ISSN: 1946-3928
Published September 27, 2016 by SAE International in United States
Off-Road Tire-Terrain Interaction: An Analytical Solution
Citation: Bekakos, C., Papazafeiropoulos, G., O'Boy, D., Prins, J. et al., "Off-Road Tire-Terrain Interaction: An Analytical Solution," SAE Int. J. Commer. Veh. 9(2):244-251, 2016,
Language: English


  1. Bekakos, C.A., Papazafeiropoulos, G., O’Boy, D.J., Prins, J. "Dynamic Response of Rigid Wheels on Deformable Terrains" Proc. 13th ISTVS European Conf., Rome, pp. 588-600, 2015.
  2. Hambleton, J.P., and Drescher, A., " Modeling Wheel-Induced Rutting in Soils: Rolling", Journal of Terramechanics, 46:35-47, 2009.
  3. Bernstein, R., “Probleme zur Experimentellen Motorpflug-mechanik”, Motorwagen, 16, 1913.
  4. Goriatchkin, B.P., “Theory and Manufacturing of Agricultural Machines”, Moscow, USSR Government, 1936.
  5. Bekker, M.G., “Theory of Land Locomotion”, The University of Michigan Press, Ann Arbor, 1956.
  6. Reece, A., “Principles of Soil-Vehicle Mechanics”, Proc. Inst. Mech. Engineers, Automobile Division, 1965.
  7. Wong, J.Y, and Reece, A., “Prediction of Rigid Wheel Performance Based on Analysis of Soil-Wheel Stresses, Part I: Performance of Driven Rigid Wheels”, Journal of Terramechanics, 4:81-98, 1967.
  8. Lyasko, M., “LSA Model for Sinkage Predictions”, Journal of Terramechanics, 47(1):1-19, 2010.
  9. Ageikin, J., “Off-the-road mobility of automobiles”, New Delhi: Amerind Pub.Co, 1981.
  10. Janosi, Z., Hanamoto, B., “The Analytical Determination of Drawbar Pull as a Function of Slip for Tracked Vehicles in Deformable Soils”, Proc. 1st Int. Conf. on the Mechanics of Soil-Vehicle Systems, Torino, Italy, 1961.
  11. Wong, J.Y., “Terramechanics and Off-Road Vehicles”, Ottawa, Canada, Elsevier, 1989.
  12. Ding, L., Gao, H., Deng, Z., Tao, J. (2010). “Wheel slip-sinkage and its prediction model of lunar rover”, Journal of Central South University of Technology, 17(1), 129-135.
  13. Harnisch, C., Lach, B., Jakobs, R., Troulis, M., et al., “A New Tyre-Soil Interaction Model for Vehicle Simulation on Deformable Ground”, Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 43:sup1, 384-394, 2005.
  14. Chan, B.J., and Sandu, C., “Development of an off-road capable tire model for vehicle dynamics simulation”, PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2008.
  15. Senatore, C., and Sandu, C., “Off-road Tyre Modeling and the Multi-pass Effect for Vehicle Dynamics Simulation”, Journal of Terramechanics, 48:265-276, 2011.
  16. El-Gawwad, K.A.A., Crolla, D.A., Soliman, A.M.A., and El-Sayed, F.M., “Off road tyre modelling I: the multi-spoke tyre model modified to include the effect of straight lugs”, Journal of Terramechanics, 36:3-24, 1999.
  17. Steiner, M., “Analyse, Synthese und Berechnungsmethoden der Triebkraft-Schlupf-Kurve von Luftreifen auf nachgiebigem Boden”, Dissertation, Technische Universität München, 1979.
  18. Trease, B., Arvidson, R., Lindemann, R., Bennett, K., et al., “Dynamic modeling and soil mechanics for path planning of the mars exploration rovers”, Proc. ASME 2011 Int. Des. Engrg Tech. Conf. and Computers and Information in Engrg Conf., 755-765, 2011.
  19. Lyasko, M., “Slip sinkage effect in soil-vehicle mechanics”, Journal of Terramechanics, 47(1):21-31, 2010.
  20. Ishigami, G. (2008). Terramechanics-based Analysis and Control for Lunar/Planetary Exploration Robots. PhD thesis, Tohoku University.

Cited By