This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Experimental and Numerical Investigation of Ethanol/Diethyl Ether Mixtures in a CI Engine
Technical Paper
2016-01-2180
ISSN: 0148-7191,
e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
The auto-ignition characteristics of diethyl ether (DEE)/ethanol mixtures are investigated in compression ignition (CI) engines both numerically and experimentally. While DEE has a higher derived cetane number (DCN) of 139, ethanol exhibits poor ignition characteristics with a DCN of 8. DEE was used as an ignition promoter for the operation of ethanol in a CI engine. Mixtures of DEE and ethanol (DE), i.e., DE75 (75% DEE + 25% ethanol), DE50 (50% DEE + 50% ethanol) and DE25 (25% DEE + 75% ethanol), were tested in a CI engine. While DE75 and DE50 auto-ignited at an inlet air pressure of 1.5 bar, DE25 failed to auto-ignite even at boosted pressure of 2 bar. The peak in-cylinder pressure for diesel and DE75 were comparable, while DE50 showed reduced peak in-cylinder pressure with delayed start of combustion (SOC). Numerical simulations were conducted to study the engine combustion characteristics of DE mixture. A comprehensive detailed chemical kinetic model was created to represent the combustion of DE mixtures. The detailed mechanism was then reduced using standard direct relation graph (DRG-X) method and coupled with 3D CFD code, CONVERGE, to simulate the experimental data. The simulation results showed that the effects of physical properties on DE50 combustion are negligible. Simulations of DE50 mixture revealed that the combustion is nearly homogenous, while diesel (n-heptane used as a surrogate) and DE75 showed similar combustion behavior with flame liftoff and diffusion controlled combustion. Diesel exhibited auto-ignition at an equivalence ratio of 2, while DE75 and DE50 showed auto-ignition in the equivalence ratio range of 1-1.5 and 0-1, respectively. The experiments and numerical simulations demonstrate how the high reactivity of DEE supports the auto-ignition of ethanol, while ethanol acts as a radical scavenger.
Authors
Citation
Sivasankaralingam, V., Raman, V., Mubarak Ali, M., Alfazazi, A. et al., "Experimental and Numerical Investigation of Ethanol/Diethyl Ether Mixtures in a CI Engine," SAE Technical Paper 2016-01-2180, 2016, https://doi.org/10.4271/2016-01-2180.Also In
References
- Hansen, A. C., Zhang, Q., and Lyne, P. W., “Ethanol-diesel fuel blends--a review,” Bioresource technology, 96:277-285, 2005, doi:10.1016/j.biortech.2004.04.007.
- Giakoumis, E. G., Rakopoulos, C. D., Dimaratos, A. M., and Rakopoulos, D. C., “Exhaust emissions with ethanol or n-butanol diesel fuel blends during transient operation: a review,” Renewable and Sustainable Energy Reviews, 17:170-190, 2013, doi:10.1016/j.rser.2012.09.017.
- Sayin, C., “Engine performance and exhaust gas emissions of methanol and ethanol-diesel blends,” Fuel, 89:3410-3415, 2010, doi:10.1016/j.fuel.2010.02.017.
- Li, D. G., Zhen, H., Xingcai, L., Wu-gao, Z., et. al., “Physico-chemical properties of ethanol-diesel blend fuel and its effect on performance and emissions of diesel engines,” Renewable energy, 30:967-976, 2005, doi:10.1016/j.renene.2004.07.010.
- Sarathy, S.M., Oßwald, P., Hansen, N., and Kohse-Höinghaus, K.,'' Alcohol combustion chemistry,'' Progress in Energy and Combustion Science, 44:40-102, 2014, doi:10.1016/j.pecs.2014.04.003.
- Leong, S. T., Muttamara, S., and Laortanakul, P., “Applicability of gasoline containing ethanol as Thailand's alternative fuel to curb toxic VOC pollutants from automobile emission,” Atmospheric Environment, 36:3495-3503, 2002, doi:10.1016/S1352-2310(02)00288-1.
- Schulz, M., and Clark, S., “Vehicle emissions and fuel economy effects of 16% butanol and various ethanol blended fuels (E10, E20, and E85),” Journal of ASTM International, 8:1-19, 2011, doi:10.1520/JAI103068.
- Jacobson, M. Z., “Effects of ethanol (E85) versus gasoline vehicles on cancer and mortality in the United States,” Environmental Science & Technology, 41:4150-4157, 2007, doi:10.1021/es062085v.
- Roberts, M. C., “E85 and fuel efficiency: An empirical analysis of 2007 EPA test data,” Energy Policy, 36:1233-1235, 2008, doi:10.1016/j.enpol.2007.11.006.
- Agarwal, A. K., “Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines,” Progress in energy and combustion science, 33:233-271, 2007, doi:10.1016/j.pecs.2006.08.003.
- Xing-cai, L., Jian-Guang, Y., Wu-Gao, Z., and Zhen, H., “Effect of cetane number improver on heat release rate and emissions of high speed diesel engine fueled with ethanol-diesel blend fuel,” Fuel, 83:2013-2020, 2004, doi:10.1016/j.fuel.2004.05.003.
- Shi, X., Pang, X., Mu, Y., He, H., et. al., “Emission reduction potential of using ethanol-biodiesel-diesel fuel blend on a heavy-duty diesel engine,” Atmospheric Environment, 40:2567-2574, 2006, doi:10.1016/j.atmosenv.2005.12.026.
- Can, Ö., Celikten, I., and Usta, N., “Effects of ethanol addition on performance and emissions of a turbocharged indirect injection diesel engine running at different injection pressures,” Energy conversion and Management, 45:2429-2440, 2004, doi:10.1016/j.enconman.2003.11.024.
- Rakopoulos, C. D., Antonopoulos, K. A., and Rakopoulos, D. C., “Experimental heat release analysis and emissions of a HSDI diesel engine fueled with ethanol-diesel fuel blends,” Energy, 32:1791-1808, 2007, doi:10.1016/j.energy.2007.03.005.
- Hulwan, D. B., and Joshi, S. V., “Performance, emission and combustion characteristic of a multicylinder DI diesel engine running on diesel-ethanol-biodiesel blends of high ethanol content,” Applied Energy, 88:5042-5055, 2011, doi:10.1016/j.apenergy.2011.07.008.
- Imran, A., Varman, M., Masjuki, H. H., and Kalam, M. A., “Review on alcohol fumigation on diesel engine: A viable alternative dual fuel technology for satisfactory engine performance and reduction of environment concerning emission,” Renewable and Sustainable Energy Reviews, 26:739-751, 2013, doi:10.1016/j.rser.2013.05.070.
- Vallinayagam, R., Vedharaj, S., Yang, W. M., Roberts, W. L., et. al., “Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review,” Renewable and Sustainable Energy Reviews, 51:1166-1190, 2015, doi:10.1016/j.rser.2015.07.042.
- Rakopoulos, D. C., Rakopoulos, C. D., Kakaras, E. C., and Giakoumis, E. G., “Effects of ethanol-diesel fuel blends on the performance and exhaust emissions of heavy duty DI diesel engine,” Energy Conversion and Management, 49:3155-3162, 2008, doi:10.1016/j.enconman.2008.05.023.
- Karthikeyan, B., and Srithar, K., “Performance characteristics of a glowplug assisted low heat rejection diesel engine using ethanol,” Applied Energy, 88:323-329, 2011, doi:10.1016/j.apenergy.2010.07.011.
- Nagarajan, G., Rao, A. N., and Renganarayanan, S., “Emission and performance characteristics of neat ethanol fuelled Dl diesel engine,” International journal of ambient energy, 23:149-158, 2002, doi:10.1080/01430750.2002.9674883.
- Maurya, R. K., and Agarwal, A. K., “Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine,” Applied Energy, 88:1169-1180, 2011, doi:10.1016/j.apenergy.2010.09.015.
- Manente, V., Johansson, B., and Tunestal, P., “Characterization of partially premixed combustion with ethanol: EGR sweeps, low and maximum loads,” Journal of Engineering for Gas Turbines and Power, 132:082802, 2010, doi:10.1115/1.4000291.
- Manente, V., Tunestal, P., Johansson, B., and Cannella, W., "Effects of Ethanol and Different Type of Gasoline Fuels on Partially Premixed Combustion from Low to High Load," SAE Technical Paper 2010-01-0871, 2010, doi:10.4271/2010-01-0871.
- Westman, B., “Ethanol fuel in diesel engines for energy efficiency,” Scania, 2005.
- Munsin, R., Laoonual, Y., Jugjai, S., Matsuki, M., et. al., “Effect of glycerol ethoxylate as an ignition improver on injection and combustion characteristics of hydrous ethanol under CI engine condition,” Energy Conversion and Management, 98:282-289, 2015, doi:10.1016/j.enconman.2015.03.116.
- Aramsiriwat, R., Iempremjit, K., Munsin, R., Laoonual, Y. et al., "Classification of Startability Characteristics of a Compression Ignition Engine Fueled with Ethanol and Ignition Improvers," SAE Technical Paper 2015-01-0119, 2015, doi:10.4271/2015-01-0119.
- Sorenson, S. C., “Dimethyl ether in diesel engines: progress and perspectives,” Journal of Engineering for Gas Turbines and Power, 123:652-658, 2001, doi:10.1115/1.1370373
- Bailey, B., Eberhardt, J., Goguen, S., and Erwin, J., "Diethyl Ether (DEE) as a Renewable Diesel Fuel," SAE Technical Paper 972978, 1997, doi:10.4271/972978.
- Mack, J. H., Flowers, D. L., Buchholz, B. A., and Dibble, R. W., “Investigation of HCCI combustion of diethyl ether and ethanol mixtures using carbon 14 tracing and numerical simulations,” Proceedings of the Combustion Institute, 30:2693-2700, 2005, doi:10.1016/j.proci.2004.08.136.
- Qi, D. H., Chen, H., Geng, L. M., and Bian, Y. Z., “Effect of diethyl ether and ethanol additives on the combustion and emission characteristics of biodiesel-diesel blended fuel engine,” Renewable Energy, 36:1252-1258, 2011, doi:10.1016/j.renene.2010.09.021.
- ASTM D6890-15., “Standard Test Method for Determination of Ignition Delay and Derived Cetane Number (DCN) of Diesel Fuel Oils by Combustion in a Constant Volume Chamber,” ASTM International, West Conshohocken, PA, 2015.
- Cha, J., Yang, S., Naser, N., Ichim, A. et al., "High Pressure and Split Injection Strategies for Fuel Efficiency and Emissions in DI Diesel Engine," SAE Technical Paper 2015-01-1823, 2015, doi:10.4271/2015-01-1823.
- Rakopoulos, D. C., “Heat release analysis of combustion in heavy-duty turbocharged diesel engine operating on blends of diesel fuel with cottonseed or sunflower oils and their bio-diesel,” Fuel, 96:524-534, 2012, doi:10.1016/j.fuel.2011.12.063.
- Rakopoulos, D. C., ”Combustion and emissions of cottonseed oil and its bio-diesel in blends with either n-butanol or diethyl ether in HSDI diesel engine,” Fuel, 105:603-613, 2013, doi:10.1016/j.fuel.2012.08.023.
- Metcalfe, W. K., Burke, S. M., Ahmed, S. S., and Curran, H. J., “A hierarchical and comparative kinetic modeling study of C1- C2 hydrocarbon and oxygenated fuels,” International Journal of Chemical Kinetics, 45:638-675, 2013, doi:10.1002/kin.20802.
- Mittal, G., Burke, S. M., Davies, V. A., Parajuli, B., et. al., “Autoignition of ethanol in a rapid compression machine,” Combustion and Flame, 161:1164-1171, 2014, doi:10.1016/j.combustflame.2013.11.005.
- Yasunaga, K., Gillespie, F., Simmie, J. M., Curran, H. J., et. al., “A multiple shock tube and chemical kinetic modeling study of diethyl ether pyrolysis and oxidation,” The Journal of Physical Chemistry A, 114:9098-9109, 2010, doi:10.1021/jp104070a.
- Yasunaga, K., Simmie, J. M., Curran, H. J., Koike, T., et. al., “Detailed chemical kinetic mechanisms of ethyl methyl, methyl tert-butyl and ethyl tert-butyl ethers: The importance of uni-molecular elimination reactions,” Combustion and Flame, 158:1032-1036, 2011, doi:10.1016/j.combustflame.2010.10.012.
- Werler, M., Cancino, L. R., Schiessl, R., Maas, U., et. al., “Ignition delay times of diethyl ether measured in a high-pressure shock tube and a rapid compression machine,” Proceedings of the Combustion Institute, 35:259-266, 2015, doi:10.1016/j.proci.2014.06.143.
- Cai, L., Sudholt, A., Lee, D. J., Egolfopoulos, F. N., et. al., “Chemical kinetic study of a novel lignocellulosic biofuel: Di-n-butyl ether oxidation in a laminar flow reactor and flames,” Combustion and Flame, 161:798-809, 2014, doi:10.1016/j.combustflame.2013.10.003.
- Al Rashidi, M. J., Davis, A. C., and Sarathy, S. M., “Kinetics of the high-temperature combustion reactions of dibutylether using composite computational methods,” Proceedings of the Combustion Institute, 35:385-392, 2015, doi:10.1016/j.proci.2014.05.109.
- Di Tommaso, S., Rotureau, P., Crescenzi, O., and Adamo, C., “Oxidation mechanism of diethyl ether: a complex process for a simple molecule,” Physical Chemistry Chemical Physics, 13:14636-14645, 2011, doi:10.1039/C1CP21357A.
- Kee, R. J., Rupley, F. M., and Miller, J. A., CHEMKIN-PRO 15112. Reaction Design, San Diego, CA.,
- Lu, T., and Law, C. K., “Toward accommodating realistic fuel chemistry in large-scale computations,” Progress in Energy and Combustion Science, 35:192-215, 2009, doi:10.1016/j.pecs.2008.10.002.
- Reitz, R., and Diwakar, R., "Structure of High-Pressure Fuel Sprays," SAE Technical Paper 870598, 1987, doi:10.4271/870598.
- Amsden, A. A., O'rourke, P. J., and Butler, T. D., KIVA-II: A computer program for chemically reactive flows with sprays (No. LA-11560-MS). Los Alamos National Lab., NM (USA), 1989.
- Babajimopoulos, A., Assanis, D. N., Flowers, D. L., Aceves, S. M., et. al., “A fully coupled computational fluid dynamics and multi-zone model with detailed chemical kinetics for the simulation of premixed charge compression ignition engines,” International journal of engine research, 6:497-512, 2005, doi:10.1243/146808705X30503.
- Richards, K. J., Senecal, P. K., and Pomraning, E., “CONVERGE (Version 1.4.1) Manual,” Convergent Science, Inc., Middleton, WI, 2012.
- Golovichev V., Mechanisms, in, 2016.
- Kodavasal, J., Kolodziej, C., Ciatti, S., and Som, S., “CFD Simulation of Gasoline Compression Ignition,” ASME 2014 Internal Combustion Engine Division Fall Technical Conference, American Society of Mechanical Engineers, 2014.
- Rakopoulos, D. C., Rakopoulos, C. D., Giakoumis, E. G., and Dimaratos, A. M., “Characteristics of performance and emissions in high-speed direct injection diesel engine fueled with diethyl ether/diesel fuel blends,” Energy, 43:214-224, 2012, doi:10.1016/j.energy.2012.04.039.
- Agarwal, A. K., and Chaudhury, V. H., “Spray characteristics of biodiesel/blends in a high pressure constant volume spray chamber,” Experimental Thermal and Fluid Science, 42:212-218, 2012, doi:10.1016/j.expthermflusci.2012.05.006.
- Suh, H. K., and Lee, C. S., “Experimental and analytical study on the spray characteristics of dimethyl ether (DME) and diesel fuels within a common-rail injection system in a diesel engine,” Fuel, 87:925-932, 2008, doi:10.1016/j.fuel.2007.05.051.