This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Signal Generator for Prediction of Transient Control Signals of an Automotive Transmission Control Unit Depending on Scalar Calibration Parameters

Journal Article
2016-01-2155
ISSN: 1946-3995, e-ISSN: 1946-4002
Published October 17, 2016 by SAE International in United States
Signal Generator for Prediction of Transient Control Signals of an Automotive Transmission Control Unit Depending on Scalar Calibration Parameters
Sector:
Citation: Rot, I. and Rinderknecht, S., "Signal Generator for Prediction of Transient Control Signals of an Automotive Transmission Control Unit Depending on Scalar Calibration Parameters," SAE Int. J. Passeng. Cars - Mech. Syst. 10(1):43-53, 2017, https://doi.org/10.4271/2016-01-2155.
Language: English

References

  1. Gutjahr, T., “Dynamic engine behavior identification for the use in model-based ECU calibration”, Proceedings in 56th International Scientific Colloquium, Ilmenau University of Technology, 12-16 September 2011.
  2. Tan, Y., Saif, M., “Nonlinear Dynamic Modelling of Automotive Engines Using Neural networks”, Proceedings of the 1997 IEEE international Conference on Control Applications, Hartford, CT, October 5-7, 1997.
  3. Narendra, K.S., Parthasarathy, K., “Identification and control of dynamic systems using neural networks”, Proceedings in IEEE Trans Neural Netw. 1(1): 4-27, 1990.
  4. Sjoberg, J., Zhang, Q. et. al., „Nonlinear black-box modeling in system identification: A unified overview“, Proceedings in Automatica 31 (12): 1691-1724, 1995.
  5. Du, K.L., Swamy, M.N.S., “Neural Networks in a Sofcomputing Framework”, Springer-Verlag London, 2006, doi: 10.1007/1-84628-303-5.
  6. Marquardt, D., "An Algorithm for Least-Squares Estimation of Nonlinear Parameters," SIAM Journal on Applied Mathematics, Vol. 11, No. 2, June 1963, pp. 431-441.
  7. Rot, I., Plöger, D., and Rinderknecht, S., "Investigation of Black Box Modeling Approaches for Representation of Transient Gearshift Processes in Automotive Powertrains with Automatic Transmission," SAE Technical Paper 2015-01-1143, 2015, doi: 10.4271/2015-01-1143.
  8. Rasmussen C. E. and Williams C. K. I., “Gaussian Processes for Machine Learning”, The MIT Press, 2005.
  9. Rasmussen C. E. and Nickisch H., “Gaussian processes for machine learning (GPML) toolbox,” Proceedings of the Journal of Machine Learning Research (11):3011-3015, 2010.
  10. Tietze, N., ”Model-based Calibration of Engine Control Units using Gaussian Process Regression”, Ph.D. thesis, Technische Universität Darmstadt, Darmstadt, 2015.
  11. Mohd Azmin, F. and Stobart, R., "Benefiting from Sobol Sequences Experiment Design Type for Model-based Calibration," SAE Technical Paper 2015-01-1640, 2015, doi: 10.4271/2015-01-1640.
  12. Zaglauer, S., “The Evolutionary Algorithm SAMOA with Use of Design of Experiments”, Proceedings of the 14th annual conference companion on Genetic and evolutionary computation: 637-638, 2012, doi: 10.1145/2330784.2330897.
  13. Haj-Fraj, A., Pfeiffer, F., “Optimization of Gear Shift Operations in Automatic Transmissions“, Proceedings in Advanced Motion Control, Nagoya, 2000, doi: 10.1109/AMC.2000.862917.
  14. Yousif, L., Rot, I. et. al. “Development of a Modular Nonlinear Automotive Powertrain Model - Analysis and Evaluation of a Schift Process of an Automatic Transmission with Different Model Configurations”, Proceedings in iav Simulation and Testing for Automotive Electronics V, Berlin, 2014, Expert Verlag, ISBN 978-3-8169-3271-0.
  15. Yousif, L., Rot, I., and Rinderknecht, S., "Comparison of Parameter-Identified Simulation Models with Different Detailing Level to Reproduce the Side Shaft Torque of an Automotive Powertrain with Automatic Transmission," SAE Int. J. Engines 9(3):2016, doi: 10.4271/2016-01-1148.
  16. Hagerodt, A., “Automatisierte Optimierung des Schaltkomforts von Automatikgetrieben”, Ph.D. thesis, TU Braunschweig, Braunschweig, 2003, ISBN: 978-3-8322-1642-9.
  17. Förster, H. J., “Automatische Fahrzeuggetriebe“, Springer Verlag Berlin Heidelberg, Heidelberg, doi: 10.1007/978-3-642-84118-7.
  18. Balau, A.,”Overall Powertrain Modeling and Control Based Driveline, Subsystems Integration“, Ph.D. thesis, Universitatea Tehnică "Gh. Asachi", Iaşi, 2011.
  19. Lucente, G., “Modelling of a car driveline for servo-actuated gear-shift control“, Proceedings of the IEEE International Symposium (1): 279-286, Dubrovnik, 2005, doi: 10,1109/ISIE.2005.1528925.
  20. Bishop, C. M., “Pattern Recognition and Machine Learning”, 2006, Springer-Verlag New York, ISBN: 978-0-387-31073-2.
  21. Williams, C.K.I., “Prediction with Gaussian processes: From linear regression and beyond”, Jordan MI, Learning and inference in graphical models, Kluwer Academic Press, 1998, pp 599-621, doi: 10.1007/978-94-011-5014-9_23.
  22. Demuth, H., Beale, M., “Neural Network Toolbox for Use with Matlab”, User´s Guide Version 4, The MathWorks, Inc., Natick, MA, 2002.
  23. Koch, J., “Modellbildung und Simulation eines Automatikgetriebes zur Optimierung des dynamischen Schaltablaufs”, Ph.D. thesis, Fakultät Physik der Univerität Stuttgart, Stuttgart, 2001.
  24. Alvermann, G., “Virtuelle Getriebeabstimmung“, Ph.D. thesis, TU Braunschweig, Braunschweig, 2009, ISBN: 978-3-8322-8052-9.

Cited By