This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Accuracy Analysis and Error Source Identification for Optimization of Robot Based Machining Systems for Aerospace Production
Technical Paper
2016-01-2137
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
Strong market growth, upcoming global competition and the impact of customer-requirements in aerospace industry demand for more productive, flexible and cost-effective machining systems. Industrial robots have already demonstrated their advantages in smart and efficient production in a wide field of applications and industries. However, their use for machining of structural aircraft components is still obstructed by the disadvantage of low absolute accuracy and adverse reaction to process loads. This publication demonstrates and investigates different methods for performance assessment and optimization of robot-based machining systems. For conventional Cartesian CNC machining systems several methods and guidelines for performance assessment and error identification are available. Due to the attributes of a common 6-axis-robot serial kinematics these methods of decoupled and separated analysis fail, especially concerning optimization of the system. One main focus of this paper lies on a new performance assessment strategy that in contrast to conventional methods neither needs a machining process nor an additional measurement system. Nevertheless it can be combined with these methods to provide even better results. By plotting the robots encoder during movement, calculating the actual tool-position/orientation and visualizing the hypothetic part manufactured a virtual machining process is elaborated. The effectiveness of this approach is demonstrated in combination with the robot optimization strategies “real-time guidance with LaserTracker” and “control parameter optimization”. The two optimization strategies themselves are the second main focus of the investigations presented.
Recommended Content
Technical Paper | Robot Integrated Metrology for Complex Part Manufacturing |
Technical Paper | Methods of Building Metal Airplane Structures |
Technical Paper | High-efficient Machining of Aerospace-alloys |
Authors
Topic
Citation
Kothe, S., Stürmer, S., Schmidt, H., Boehlmann, C. et al., "Accuracy Analysis and Error Source Identification for Optimization of Robot Based Machining Systems for Aerospace Production," SAE Technical Paper 2016-01-2137, 2016, https://doi.org/10.4271/2016-01-2137.Also In
References
- Abele, E. et al.: Spanende Bearbeitung mit Industrierobotern. Thermische Einflüsse auf die Bearbeitungsgenauigkeit. In Werkstatttechnik Online, 2013, Jahrgang 103 (2013) H. 9; S. 706-711.
- Abele, E.: Spanende Bearbeitung mit Industrierobotern.; Abschlußbericht BMBF-Verbundprojekt "Adaptive, vollserielle Werkzeugmaschine mit hochintegriertem, mechatronischen Fräsmodul zur HSC-Bearbeitung" (ADVOCUT). Meisenbach, Bamberg, 2007.
- Airbus S.A.S.: Global Market Forecast 2015-2034. Flying by Numbers, 2015.
- Airbus S.A.S.: Orders & deliveries | Airbus, a leading aircraft manufacturer, 2016.
- Borrmann, C.; Wollnack, J.: Calibration of external linear robot axes using spline interpolation: 2014 6th International Conference on Modelling, Identification and Control (ICMIC); S. 111-116.
- Borrmann, C.; Wollnack, J.: Enhanced Calibration of Robot Tool Centre Point Using Analytical Algorithm. In International Journal of Materials Science and Engineering, 2015; S. 12-18.
- DeVlieg, R., "High-Capacity Mobile Robotic Drilling and Fastening System," Presentation at the SAE 2014 Aerospace Manufacturing and Automated Fastening (AMAF) Conference Salt Lake City, Utah, USA, 2014.
- Droll, S., "Real Time Path Correction of Industrial Robots with Direct End-Effector Feedback from a Laser Tracker," SAE Int. J. Aerosp. 7(2):222-228, 2014, doi:10.4271/2014-01-2248.
- Gan, Z.; Tang, Q.: Visual Sensing and its Applications. Integration of Laser Sensors to Industrial Robots. Zhejiang University Press Hangzhou and Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2011.
- Güdel AG: GÜDEL Trackmotion TMF. a linear axis for robots. http://www.gudel.com/fileadmin/01-dateien/10-kataloge-und-dokumente/010-modules/Trackmotion_TMF_EN.pdf, 2013.
- Haldimann, R. and Orf, D., "Utilization of a Vision System to Automate Mobile Machine Tools," SAE Int. J. Mater. Manf. 8(1):63-66, 2015, doi:10.4271/2014-01-2271.
- Hexagon Metrology: Leica Absolute Tracker AT901. Top performance 6DoF laser tracker, 2012.
- Hexagon Metrology: Release emScon 3.8 - Customer Information Sheet. Automation - 1kHz Real-Time EtherCAT interface, 2012.
- Hintze, W; Kothe, S. et al.: Increasing Accuracy of Industrial Robots in Machining of Carbon Fiber Reinforced Plastics. In (Denkena, B. Hrsg.): New Production Technologies in Aerospace Industry. Proceedings of the 4th Machining Innovations Conference. Springer, 2013; S. 115-121.
- Hoffmann Group: Solid carbide end mill TiAlN 6 mm HOLEX. https://www.hoffmann-group.com/medias/sys_master/root/h71/h33/8871785562142/202515.pdf, 2016.
- Kuka Roboter GmbH: KR300 Quantec Ultra. http://www.kuka-robotics.com/res/sps/48ec812b-1b29-4789-8ac2-598aff70abc0_Spez_KR_QUANTEC_ultra_en.pdf, 2013.
- Lässi, R. et al.: Serienproduktion von hochfesten Faserverbundbauteilen. Perspektiven für den deutschen Maschinen- und Anlagenbau, 2012.
- Meiners, D.: Beitrag zur Stabilität und Automatisierung von CFK-Produktionsprozessen, Dissertation Technischen Universität Clausthal, 2011.
- Necumer: NECURON 1007. BOARD MATERIAL -TECHNICAL DATA SHEET, 2015.
- SLSteffen Lenssen GmbH: Technische Daten SLQ100-H4036A. HSC-Professionals, 2012.
- Uriarte, L. et al.: Machine tools for large parts. In CIRP Annals -Manufacturing Technology, 2013, 62; S. 731-750.
- Ingenieure Verein Deutscher; Gesellschaft NC: VDI/NCG 5211-2 - Testing guidelines and testing workpieces for high speed cutting (HSC) Milling machines and machining centres for the 5-axis simultaneous milling. Beuth Verlag GmbH, 2013.
- ISO-9283: Industrieroboter - Leistungsgrößen und zugehörige Prüfmethoden. Beuth Verlag GmbH, 1999.