This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Role of Nonlinearity and Uncertainty in Assessing Disc Brake Squeal Propensity

Journal Article
2016-01-1777
ISSN: 1946-3995, e-ISSN: 1946-4002
Published June 15, 2016 by SAE International in United States
The Role of Nonlinearity and Uncertainty in Assessing Disc Brake Squeal Propensity
Sector:
Citation: Oberst, S., Zhang, Z., and Lai, J., "The Role of Nonlinearity and Uncertainty in Assessing Disc Brake Squeal Propensity," SAE Int. J. Passeng. Cars - Mech. Syst. 9(3):980-986, 2016, https://doi.org/10.4271/2016-01-1777.
Language: English

References

  1. Kinkaid , N.M. , O'Reilly , O.M. , Papadopoulos , P. Automotive disc brake squeal J. Sound Vib. 267 105 166 2003
  2. Oberst , S. , Lai , J.C.S. , Marburg , S. Guidelines for numerical vibration and acoustic analysis of disc brake squeal using simple models of brake systems J. Sound Vib. 332 2284 2299 2013
  3. von Wagner , U. , Schlagner , S. On the origin of disk brake squeal Intern. J. Veh. Des. 51 223 237 2009
  4. Behrendt , J. , Weiss , C. , Hoffmann , N.P. A numerical study on stick-slip motion of a brake pad in steady sliding J. Sound Vib. 330 636 651 2011
  5. Sinou , J.J. , Thouverez , F. , Jezequel , L. Analysis of friction and instability by the centre manifold theory for a non-linear sprag-slip model J. Sound Vib. 265 527 559 2003
  6. Shin , K. , Brennan , M. , Oh , J.-E. , Harris , C. Analysis of disc brake noise using a two-degree-of-freedom model J. Sound Vib. 254 837 848 2002
  7. Zhang , Z. , Oberst , S. , Lai , J.C.S. Instability prediction of brake squeal by nonlinear stability analysis INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Institute of Noise Control Engineering 526 532 2014
  8. Oberst , S. , Lai , J.C.S. Nonlinear transient and chaotic interactions in disc brake squeal J. Sound Vib. 342 272 289 2015
  9. Zhang , Z. , Oberst , S. , Williams , J.J.R , Lai , J.C.S. Improving brake squeal propensity prediction by model updating Acoustics 2015 15-18 Nov Hunter Valley, Cypress Lakes, NSW, Australia 2015
  10. Vitanov , N.K. , Hoffmann , N.P. , Wernitz , B. Nonlinear time series analysis of vibration data from a friction brake: SSA, PCA, and MFDFA Chaos, Solitons & Fractals 69 90 99 2014
  11. Hochlenert , D. Nonlinear stability analysis of a disk brake model Nonl. Dyn. 58 63 73 2009
  12. Butlin , T. , Woodhouse , J. Sensitivity studies of friction-induced vibration Intern. J. Veh. Des. 51 238 257 2009
  13. Feeny , B. , Moon , F.C. Chaos in a forced dry-friction oscillator: experiments and numerical modelling J. Sound Vib. 170 303 323 1994
  14. Butlin , T. Woodhouse , J. A systematic experimental study of squeal initiation J. Sound Vib. 330 5077 5095 2011
  15. Giannini , O. , Akay , A. , Massi , F. Experimental analysis of brake squeal noise on a laboratory brake setup J. Sound Vib. 292 1 20 2006
  16. Butlin , T. , Woodhouse , J. Friction-induced vibration: Should low-order models be believed? J. Sound Vib. 328 92 108 2009
  17. Kruse , S. , Tiedemann , M. , Zeumer , B. , Reuss , P. , Hetzler , H. , Hoffmann , N. The influence of joints on friction induced vibration in brake squeal J. Sound Vib. 340 239 252 2015
  18. Oberst , S. , Lai , J.C.S. Chaos in brake squeal noise J. Sound Vib. 330 955 975 2011
  19. Coudeyras , N. , Nacivet , S. , Sinou , J.-J. Periodic and quasi-periodic solutions for multi-instabilities involved in brake squeal J. Sound Vib., 328 520 540 2009
  20. Oberst , S. , Lai , J.C.S. Statistical analysis of brake squeal noise J. Sound Vib. 330 2978 2994 2011
  21. Wernitz , B.A. , Hoffmann , N.P. Recurrence analysis and phase space reconstruction of irregular vibration in friction brakes: Signatures of chaos in steady sliding J. Sound Vib. 331 16 30 July 2012 3887 3896
  22. Oberst , S. , Lai , J.C.S. A statistical approach to estimate the Lyapunov spectrum in disc brake squeal J. Sound Vib. 334 120 135 2015
  23. Zhang , Z. , Oberst , S. , Lai , J.C.S. A stochastic approach to predicting brake squeal propensity The 21st ICSV 13-17 Jul Beijing, China 2014
  24. Zhang , Z. , Oberst , S. , Lai , J.C.S. Application of polynomial chaos expansions to analytical models of friction oscillators Proceedings of Acoustics 17-20 Nov Victor Harbor, Australia 2013
  25. Nechak , L. , Gillot , F. , Besset , S. , Sinou , J.-J. Sensitivity analysis and Kriging based models for robust stability analysis of brake systems Mech. Res. Comm. 69 136 145 2015
  26. Sarrouy , E. , Dessombz , O. , Sinou , J.J. Piecewise polynomial chaos expansion with an application to brake squeal of a linear brake system J. Sound Vib. 332 577 594 2013
  27. Tison , T. , Heussaff , A. , Massa , F. , Turpin , I. , Nunes , R.F. Improvement in the predictivity of squeal simulations: Uncertainty and robustness J. Sound Vib. 333 3394 3412 2014
  28. AbuBakar , A.R. , Ouyang , H. 2006 Complex eigenvalue analysis and dynamic transient analysis in predicting disc brake squeal Intern. J. Veh. Noise Vib 2 143 155
  29. Oberst , S. , Lai , J.C.S. Pad-mode-induced instantaneous mode instability for simple models of brake systems Mech. Sys. Sig. Proc. 62-63 490 505 2015
  30. Oberst , S. , Lai , J.C.S. Squeal noise in simple numerical brake models J. Sound Vib. 352 129 141 2015
  31. Zhang , Z. , Oberst , S. , Lai , J.C.S. 2015 Instability analysis of friction oscillators with uncertainty in friction law distribution Proc. Inst. Mech. Eng. C - J. Mech. Eng. Sci. 6 Oct 2015
  32. Hoffmann , N. , Fischer , M. , Allgaier , R. , Gaul , L. A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations Mech. Res. Comm. 29 197 205 2002
  33. Shin , K. , Brennan , M.J. , Joe , Y.G. et al. Simple models to investigate the effect of velocity dependent friction on the disc brake squeal noise Intern. J Autom. Tech. 5 61 67 2004
  34. Hinrichs , N. , Oestreich , M. , Popp , K. On the modelling of friction oscillators J. Sound Vib. 216 435 459 1998
  35. Hoffmann , N..P. Linear stability of steady sliding in point contacts with velocity dependent and LuGre type friction J. Sound Vib. 2007 301 3 1023 1034
  36. Gdaniec , P. , WeiƟ , C. , Hoffmann , N.P. On chaotic friction induced vibration due to rate dependent friction Mech. Res. Comm. 37 92 95 2010

Cited By