This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Transient Responses of Various Ammonia Formation Catalyst Configurations for Passive SCR in Lean-Burning Gasoline Engines under Various Real Engine Conditions.
Technical Paper
2016-01-0935
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Passive selective catalyst reduction (SCR) systems can be used as aftertreatment systems for lean burn spark ignition (SI)-engines. Their operation is based on the interaction between the engine, an ammonia formation catalyst (AFC), and an SCR catalyst. Under rich conditions the AFC forms ammonia, which is stored in the SCR catalyst. Under lean conditions, the SCR catalyst reduces the engine out NOx using the stored NH3.
This study compared the ammonia production and response times of a standard three way catalyst (TWC) and a Pd/Al2O3 catalyst under realistic engine operating conditions. In addition, the relationships between selected engine operating parameters and ammonia formation over a TWC were investigated, considering the influence of both the chosen load point and the engine settings.
Tests at the loadpoint of 1500 rpm/2.63 bar break mean effective pressure (BMEP) showed that most ammonia was formed over a TWC at a lambda of 0.93 with a 50% mass fraction burned (MFB) at 3 crank angle degrees (CAD) after top dead centre (aTDC), when valve overlap was minimised. The response time of the TWC during transitions from rich to lean operation was evaluated at various loadpoints, showing that the TWC responded most rapidly at higher loadpoints, mainly due to the higher flow through the catalyst. Furthermore it was noted that at 1750 rpm/8.00 bar BMEP, ammonia formation decreased over time due to high in-catalyst temperatures.
A comparison between the TWC and Pd/Al2O3 catalyst showed that the latter produced ammonia faster than the TWC catalyst at 1500 rpm/2.63 bar BMEP. Furthermore the yield was more than 50% lower compared to the TWC.
Recommended Content
Journal Article | Development of TWC and PGM Free Catalyst Combination as Gasoline Exhaust Aftertreatment |
Technical Paper | Analysis of TWC Characteristics in a Euro6 Gasoline Light Duty Vehicle |
Authors
Citation
Doornbos, G., Hemdal, S., Dahl, D., and Denbratt, I., "Transient Responses of Various Ammonia Formation Catalyst Configurations for Passive SCR in Lean-Burning Gasoline Engines under Various Real Engine Conditions.," SAE Technical Paper 2016-01-0935, 2016, https://doi.org/10.4271/2016-01-0935.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 |
Also In
References
- Miyoshi , N. , Matsumoto , S. , Katoh , K. , Tanaka , T. et al. Development of New Concept Three-Way Catalyst for Automotive Lean-Burn Engines SAE Technical Paper 950809 1995 10.4271/950809
- Theis , J. , Kim , J. , and Cavataio , G. TWC+LNT/SCR Systems for Satisfying Tier 2, Bin 2 Emission Standards on Lean-Burn Gasoline Engines SAE Int. J. Fuels Lubr. 8 2 474 486 2015 10.4271/2015-01-1006
- Theis , J. Selective Catalytic Reduction for Treating the NOx Emissions from Lean-Burn Gasoline Engines: Performance Assessment SAE Int. J. Fuels Lubr. 1 1 364 375 2009 10.4271/2008-01-0810
- Li , W. , Perry , K. , Narayanaswamy , K. , Kim , C. et al. Passive Ammonia SCR System for Lean-burn SIDI Engines SAE Int. J. Fuels Lubr. 3 1 99 106 2010 10.4271/2010-01-0366
- Woodburn , J. , Bielaczyc , P. , and Szczotka , A. Chassis Dynamometer Testing of Ammonia Emissions from Light-Duty SI Vehicles in the Context of Emissions of Reactive Nitrogen Compounds SAE Technical Paper 2013-01-1346 2013 10.4271/2013-01-1346
- Adams E.C. , Skoglundh M. , Folic M. , Bendixen E.V. , Gabrielsson P. , and Carlsson P.-A. Ammonia formation over supported platinum and palladium catalysts Applied Catalysis B: Environmental 165 10 19 2015
- Theis , J. , Kim , J. , and Cavataio , G. Passive TWC+SCR Systems for Satisfying Tier 2, Bin 2 Emission Standards on Lean-Burn Gasoline Engines SAE Int. J. Fuels Lubr. 8 2 460 473 2015 10.4271/2015-01-1004
- Doornbos , G. , Adams , E. , Carlsson , P. , Dahl , D. et al. Comparison of Lab Versus Engine Tests In the Development of a Highly Efficient Ammonia Formation Catalyst for a Passive SCR System SAE Technical Paper 2015-24-2504 2015 10.4271/2015-24-2504
- Prikhodko , V. , Parks , J. , Pihl , J. , and Toops , T. Ammonia Generation over TWC for Passive SCR NOX Control for Lean Gasoline Engines SAE Int. J. Engines 7 3 1235 1243 2014 10.4271/2014-01-1505
- Bielaczyc , P. , Szczotka , A. , Swiatek , A. , and Woodburn , J. A Comparison of Ammonia Emission Factors from Light-Duty Vehicles Operating on Gasoline, Liquefied Petroleum Gas (LPG) and Compressed Natural Gas (CNG) SAE Int. J. Fuels Lubr. 5 2 751 759 2012 10.4271/2012-01-1095
- DiMaggio , C. , Fisher , G. , Rahmoeller , K. , and Sellnau , M. Dual SCR Aftertreatment for Lean NOx Reduction SAE Int. J. Fuels Lubr. 2 1 66 77 2009 10.4271/2009-01-0277
- Choi J-S. , Partridge W.P. , Pihl J.A. , Kim M-Y. , Koči P. , and Daw C.S. Spatiotemporal distribution of nox storage and impact on nh 3 and n 2 o selectivities during lean/rich cycling of a ba-based lean no x trap catalyst Catalysis Today 184 20 26 2012
- Heywood J.B. Internal Combustion Engine Fundamentals McGraw-Hill 1988
- DiGiulio C.D. , Pihl J.A. , Parks J.E. II , and Amiridis M.D Passive-ammonia selective catalytic reduction (scr): Understanding nh 3 formation over close-coupled three way catalysts (twc) Catalysis Today 231 33 45 2014
- Bártová S. , Mràček D. , Koči P. , Marek M. , and Choi J-S. Ammonia reactions with the stored oxygen in a commercial lean no x catalyst Catalysis Today 278 199 206 2015
- Brisley , R. , Chandler , G. , Jones , H. , Anderson , P. et al. The Use of Palladium in Advanced Catalysts SAE Technical Paper 950259 1995 10.4271/950259
- Karakaya C. , Ottersttter R. , Maier L. , and Deutschmann O. Kinetics of the water-gas shift reaction over rh/al 2 o 3 catalysts Applied Catalysis A: General 470 31 44 2014
- Oh S.H. and Triplett T. Reaction pathways and mechanism for ammonia formation and removal over palladium-based three-way catalyst: Multiple roles of co. Catalysis Today 231 22 32 2014